
 

 

 

  

Abstract— Designing an intelligent situated agent is a 

difficult task as the designer must see the problem from the 

agent’s standpoint considering all its sensors and actuators. We 

have devised a co-evolutionary/reinforcement learning hybrid 

method to automate the design of hierarchical behavior-based 

systems. In our approach, the design problem is decomposed 

into two separate parts: developing a repertoire of behaviors 

and organizing those behaviors in a structure. Mathematical 

formulation shows how to decompose the value of the structure 

to simpler components. These components can be estimated 

and used to find the optimal organization of behaviors during 

the agent’s lifetime. Moreover, a novel co-evolutionary 

mechanism is suggested that evolves each type of behavior 

separately in their own genetic pool. Our method is applied to 

the decentralized multi-robot object lifting task which results in 

human-competitive performance. 

I. INTRODUCTION 

 

UR long-term research goal is developing general 

automatic methods for designing distributed multi-agent 

systems. In this paper, we present a hybrid co-

evolutionary/reinforcement learning method for designing 

behavior-based systems. Our method uses co-evolutionary 

mechanism for behavior design and reinforcement learning 

for organizing those behaviors in a hierarchy. The 

motivation behind our work is benefiting the global 

searching capability of the evolutionary mechanism and fast 

adaptation of learning. Moreover, the special decomposition 

of the problem into behavior evolution and hierarchy 

learning increases the flexibility and the modularity of the 

design process. 

Behavior-based approach is chosen as the physical agent’s 

low-level controller ([1] and [2]). Behavior-based systems 

are not only robust to different uncertainties that might be 

faced by a robot in the real world, but also are biologically 

plausible. There are many different successful applications 

of behavior-based systems (e.g. [3], [4], [5], and [6]) most of 

them are hand-designed. There is little work on automating 
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the design process. In practice, the designer generally uses 

bottom-up trial and error approach to devise a behavior-

based system that meets the required performance 

objectives. In most cases, this is a difficult task and the 

design burden is considered one of the major drawbacks of 

behavior-based systems. 

Some researches have tried to solve this problem by using 

learning or evolution. In one research track, learning is used 

to partially solve a subset of existing problems in behavior-

based system design (e.g. [7], [8], and [9]). Most learning 

algorithms, which are based on local search, may not find a 

good solution in a very big and bumpy parameter space and 

become trapped in a local optimum. Despite this 

disadvantage, they are relatively fast in finding some 

solutions even in non-stationary environments. The other 

prominent approach to automate the design process is based 

on artificial evolution (e.g. [10], [11], and [12]). Although 

evolutionary robotics seems a promising alternative for 

automatic robotic system design, it is usually too slow and 

cannot handle non-stationary environment easily. Moreover, 

the current approach to evolutionary robotics produces non-

modular, non-reusable controllers (See [11] as an alternative 

approach that considers the modularity of the controller). 

We propose a hierarchical behavior-based system design 

methodology in which not only the agent learns to arrange 

behaviors in the architecture (like [13]), but also develops 

behaviors too. We decompose the problem into two separate 

sub-problems: behavior development and arranging 

behaviors in the hierarchical structure. A co-evolutionary 

mechanism develops new behaviors in separate genetic 

(behavior) pools. Each genetic pool is devoted to a single 

kind of behaviors (e.g. a pool for “obstacle avoidance 

behavior” and a separate pool for “go forward” behavior in a 

simple mobile robot navigation task). To develop a new 

agent, we collect a behavior instance from each pool to form 

a set of behaviors. Thereafter, the agent tries to organize 

those inherited behaviors in its architecture guided by the 

received reinforcement signal. We use a special form of 

reinforcement learning paradigm for hierarchy (structure) 

learning (See [14] for more information about reinforcement 

learning; see also [15] for a survey of hierarchical 

reinforcement learning methods which are similar to our 

structure learning). Based on the performance of the agent, 

the fitnesses of the corresponding behaviors of each 
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behavior pool are updated. 

 The hybridization of an evolutionary method and a local 

search (seeing learning as a local search) is not new in the 

evolutionary computation community. The resulted class of 

algorithms, which has many variations, is often called 

memetic algorithm [16]. Nevertheless, our hybridization is 

different than most other approaches. In our method, 

learning and evolution are applied to two different spaces: 

hierarchy space and behavior space. Learning optimizes the 

objective function by arranging a limited set of behaviors in 

the structure and evolution optimizes the same objective 

function by changing behaviors’ internal mechanism. 

Learning acts as the fast adaptation mechanism for the agent 

and evolution acts as the slow but global optimizer. 

Finally, we should mention that we have chosen a 

specialized version of the Subsumption Architecture (SSA) 

([1]) as our hierarchical behavior-based system. The SSA is 

a successful and competent behavior-based architecture in 

which different behaviors compete with each other to take 

control of the agent. The reason for selecting SSA was two-

fold: its flexibility and the existence of structure learning 

method for it [13].  

After formulating the problem mathematically in Section 

I, we propose our structure (hierarchy) learning method in 

Section II. In this section, we show how to organize a given 

set of behaviors in the architecture. This organization is 

based on the received reinforcement signal. In Section III, 

we introduce our special co-evolutionary mechanism and 

show how to separate behaviors into different genetic pools, 

and how to assign fitness to each behavior, and the way to 

combine our behaviors. Subsequently, in Section IV, we 

show the application of our method in designing a 

decentralized multi-robot object lifting task that has been 

previously solved by a human and considered as a difficult 

problem. 

I. PROBLEM FORMULATION 

Suppose that we have a set of n  behaviors 

B
i

{ };i =1,...,n , defined as the following map between 

perception and action of the agent: 
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where S
i
 is the subset of the state space observable by 

behavior B
i
 ( Si S j

, in general), A
i
 is the set of B

i
’s 

output actions, i.e. actuators, and M
i
 is the mapping that 

projects the agent’s total state to its internal perception. Each 

behavior B
i
 is augmented with “No Action” (NA). NA is an 

action that even if selected, it does not change actuators. NA 

is for allowing behaviors not to activate in some regions of 

their excitation space. It can be shown that this enables the 

agent to achieve higher performance. A behavior B
i
 is 

excited if s
i

S
i
 (  s 

i
 S 
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and output a
i
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architecture, we use a special but important case of Purely 

Parallel Subsumption Architecture (PPSSA) (Fig. 1). In 

PPSSA, all behaviors are parallel and a higher behavior has 

the priority to suppress the lower one and to become the 

controlling behavior of the agent. Suppose that we have a 

set of n  behaviors B
i

{ } and a m -behavior architecture T  

consisted of m  of those behaviors (m n). T(i) denotes the 

behavior in the i
th

 layer of T  in that the numbering starts 

from the lowest layer. We can write 

 

T = [Bind (1) Bind (2) ... Bind (m )]
T     m n

ind(i): j   (that indicates B j  is in the ith  layer)
 (2) 

 

Now, we define our structure learning problem. Regarding 

reinforcement learning notion, the goal of learning is 

maximizing (or minimizing) a function of received 

reinforcement signal. Having r
t
 as the reinforcement signal 

received at time t  (which may be dependent on the system’s 

state, selected action,  etc.), defining R  as a random 

variable that indicates the episode’s return for the agent, and 

N  as the length of episode, the value of the total system 

with structure T  and set of behaviors B
i

{ } (i =1,...,n)  

following policy  is  
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In the structure learning, we assume having a suitable 

behaviors repertoire and our goal is choosing an ordered 

sequence T  with m  out of n  behaviors that maximizes (3). 

 

T
*

= argmax
T

V
T

 (4) 

 

On the other hand, the behavior evolution problem 

considers adjusting each behavior B
i
’s mapping from the 

Fig. 1. A typical purely parallel Subsumption architecture. 
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sensing space (  S 
i
) to the augmented action space (  A 

i
) using 

evolutionary process. In other words, a behavior must 

choose an appropriate action a
i

*
 in each  s 

i
 that maximizes its 

fitness. More detail is presented in Section III. 

II. STRUCTURE LEARNING 

In this section, we propose a method for structure 

learning. Our aim is finding a T
*
 that satisfies (4). To solve 

this problem, we should find a solution to the following sub-

problems: 1) Representation: How should the agent 

represent knowledge gathered during learning? 2) 

Hierarchical Credit Assignment: How should the agent 

assign credit to different behaviors and layers in its 

architecture? 3) Knowledge Updating: How should the agent 

update its knowledge when it receives reinforcement signal? 

By defining an appropriate representation, hierarchical credit 

assignment and knowledge updating can be solved easily as 

it is shown in this section by introducing Zero Order 

representation [13]. 

A. Zero Order Representation 

In this representation, we store the expected value of each 

behavior in each layer. In other words, the merit of being in 

a layer for each behavior is stored. For a given structure T , 

we have: 
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in which L
i
 is the i

th
 layer, E[ 1

N r
t
L
i
 is controlling]  is the 

expected reward of the system when the ith  layer takes 

control and P(L
i
 is controlling) is its probability of being 

the controlling layer assuming that at least one of behaviors 

becomes active. Note that this decomposition is possible 

because different time instances 

t "L
i
 is controlling" in timestep  t{ } are mutually exclusive – 

only a behavior can be controlling at each moment. Here, we 

assume that at least of the behaviors is active (and not 

controlling which is just one) at every moment. Note that we 

do not assume independence of these events. 

Defining ),( jiVZO  -Zero Order value- as  

 

VZO (i, j) =Vij = E
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rt
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we have 
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in which { }
ij LBP |  is the probability that 

jB  is the 

controlling behavior whenever 
i
L  is the controlling layer. 

Altogether, 
T
V  can be written as 

 

VT = P B j | Li{ }VijP Li is controlling( )
j=1

n

i=1

m

 (8) 

 

It is evident that this representation is complete as it can 

represent every possible combination of behaviors. The 

representation space size is much smaller than a complete 

one that stores every possible combination and is 

 

cardinality(ZO) = n m  (9) 

 

In order to find the optimal structure, we should select a 

one that satisfies (4). To do so, it is certain that we must 

have an estimation of 
ijV , ( )gcontrollin is 

i
LP , and 

P B j | Li{ }.  

According to the definition of 
ijV  (6), credit assignment is 

straightforward: 
ijV  must be updated whenever 

jB  is the 

controlling behavior in the 
th
i  layer. Therefore, if layer i  is 

the controlling layer and 
jB  has been activated in it while 

the system receives reinforcement signal
k
r , 

ijV  can be 

updated in the following stochastic approximation way: 

 

Vijk+1
= 1 k,ij( )Vijk

+ k,ij rk

 
whenever B j  is the controlling

behavior in the ith  layer

 

 
 

 

 
 

 (10) 

 

Estimation of ( )gcontrollin is 
i
LP  and { }

ij LBP |  is not 

difficult and one can set a counter for all of these variables 

and increase them accordingly. However, there is another 

elegant method to estimate all these values at once. Instead 

of updating components of (8) separately, it is possible to 



 

 

 

estimate all of them together by defining 
ijV
~

 as 
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Hence, it is now possible to find the arrangement of 

behaviors in (8) that satisfies (4). Different methods can 

solve the combinatorial optimization problem of finding 
*
T  

- we have used simple stochastic search in our 

implementations: calculating values for many different 

randomly chosen structures and selecting the one with the 

highest value. This approximate method is suitable for not so 

big solution spaces. 

III. BEHAVIOR CO-EVOLUTION 

In this section, we discuss different aspects of our co-

evolutionary behavior development scheme. 

A.  Cooperative Behaviors’ Pools 

In contrast with most evolutionary approaches in 

evolutionary robotics, we do not use a single population of 

behaviors. We discriminate behaviors by their supposed 

“behavior” and make them evolve in their own behavior 

(genetic) pool. Therefore, if n different behaviors are needed 

to solve the problem, there will be n separate behavior pools 

without any direct interaction. 

 In order to evaluate each individual of each pool, we have 

proposed a special mechanism, which is inspired from the 

Enforced Sub-Population (ESP) [17]: First, a behavior is 

selected randomly from each behavior pool to form a set of 

behaviors. Thereafter, they are submitted to a trial in that the 

agent learns the best arrangement of behaviors using the 

introduced structure learning method. It is evident that 

arranged architecture may not work properly unless most of 

its behaviors are correct. By “correct”, we mean that each of 

them performs such that by arranging it in the architecture, 

the agent can do something useful.  The performance of the 

agent is correlated with the performance (i.e. fitness) of each 

behavior in it. However, the exact contribution of each 

behavior is not known, as the performance of the agent is a 

complicated function of all contributing behaviors and their 

arranged structure. Nevertheless, the performance of the 

agent can be a good measure of the performance of each 

behavior. Therefore, we estimate the fitness of each behavior 

as the average the fitness of all agents in which that specific 

behavior has contribution. If a single instance of a type of 

behavior involves in the architecture of a few different 

agents, its fitness is defined as the average fitness of all 

those agents. More precisely, if we define an average fitness 

of a set of behaviors in the agent as 
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Then, each behavior’s fitness is defined as 

 

f Bi

j( ) =
1

N
V

B{ }
i Last k episodes

B{ }
i

 (14) 

in which Bi

j
 is the thj  individual from the 

th
i  population 

and { }
i

B s are N  randomly chosen set of behaviors in 

TABLE 1. GENERAL LEARNING/CO-EVOLUTION MECHANISM PSEUDOCODE 

o Initialize n  different behavior pools for each behavior type B
i
 

o While ~(stopping condition) { 

o Selects n  different behavior B
i
 from each behavior pool to make a set of randomly chosen 

behaviors B
i

{ } 

o Pass B
i

{ } to the agent{ 

o Initialize Learning parameters 

o For a [limited] lifetime do 

 Update learning parameters to ensure convergence 

 Select an architecture T
*
 that maximizes (8) (Zero Order representation) using 

an optimization method (If the architecture is fixed, skip this step). 

 Using the provided architecture T
*
 and behaviors B

i
{ }, let the agent interact 

with the environment for a while 

 Receive reinforcement signal from the critic (that can be external or internal) 

 Update the estimation of necessary values ( ˜ V ij{ }  (13)) 

o Return Fitness (13) to the evolutionary process } 

• Share fitness to behaviors according to (14) 

• For each behavior pool 

o Apply conventional genetic operators to behaviors in order to generate a new population, 
i.e. Selection, Crossover, and Mutation. 



 

 

 

which { }
i

j

i BB . { }
i

B  are chosen randomly, so it is possible 

for a specific behavior to be selected more often than others. 

However, by performing enough trials, we become sure that 

each behavior has involved in the sufficient number of 

experiments and the estimated fitness is a rather good 

measure for its goodness. Note that like ESP, we share 

fitness of the agent to its components according to the 

overall fitness of the agent (in our case, the components are 

behaviors, and in the ESP, they are neurons).  

A real-valued Q-table-like representation with an 

appropriate dimension is used for each behavior B
i
 as (note 

that this table has no value interpretation as Q-table in 

reinforcement learning.) 

 

B
i
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i
 A 
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Action selection is greedy action selection, i.e. 

 

Bi

j (si) = argmax
ai

Qi

j
si,ai( ) (16) 

 

The result of this action selection may be an action for the 

agent’s actuator or NA. In the latter case, that behavior does 

not become active and lets lower behaviors take control of 

the agent. 

B. Genetic Operators 

We use one crossover and two mutations (named hard and 

soft) genetic operators. Hard mutation, which is selected 

with the probability of 
hardmp  replaces a Q-Table with a 

completely random new one, i.e.  

 

( )2,µi
j

i NQ
new

=  (17) 

in which ( )2,µ
i
N  is a normal random variable with an 

appropriate dimension. Soft mutation perturbs each Q-Table 

in order to search nearby points in the solution space. 

Therefore, it is a kind of local search commonly used in 

simulated annealing. Soft mutation, which happens with 

probability of 
softmp  is defined as 
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in which we use the individual’s matrix Euclidean norm to 

set the variance of perturbation so that the perturbation be in 

an appropriate magnitude,  i.e. if the matrix’s norm is too 

small, perturbing it too much puts it far from its previous 

point in the solution space, and vice versa. Crossover 

operators is chosen as 

 

)1,0(     ;)1( UQQQ
oldoldnew k

i

j

i

j

i +=  (19) 

in which )1,0(U  is a uniform random number between 0 

and 1. Doing so, the evolutionary process tries to exploit the 

solution space by linear combination of parents. This may 

result in finding a better solution when the fitness landscape 

between these two points is convex with a maximum 

between them. 

In order to summarize our approach, the pseudocode of 

our behavior co-evolution and structure learning method is 

shown in Table 1. 

IV. EXPERIMENTS 

We tackle a difficult multi-robot object lifting task in 

order to show the effectiveness of our developed method. 

This problem had been solved by a traditional approach in 

[17], i.e. hand-designing the correct behavior and structure 

in an exhausting trial and error procedure. At the time this 

problem was solved, it was considered as a challenging 

problem in multi-robot systems. Results of this paper is 

based on the simulation of the task. 

Imagine a situation in which a group of robots (three in 

our case) must lift up a bulky and large object (Fig. 2). The 

object is of such a size and shape that none of the robots can 

grasp it directly. It is shown in [17] that by keeping the tilt 

angle of the object in a pre-specified limit, the robots 

equipped with some compliance are not required to move, 

the object does not hit the robots, and the system is stable. 

Moreover, it is easy to design a mechanism for each robot to 

measure the object’s tilt angle in its own coordinate (See 

[17] for more detailed description). Our goal is finding a 

suitable architecture that can solve this cooperative multi-

robot lifting of an unknown object to a set-point while 

keeping its tilt angle small with no central control or 

communication between the robots. For our experiments, we 

consider four cases: 1) evolution of behaviors and learning 

of structure, 2) evolution of behaviors with fixed structure 

(same as hand-designed structure), 3) learning of structure 

with hand-designed behaviors, and 4) hand-designed 

behaviors and structure. 

Let z(k) be the height of robot-object contact point, v(k)  

be its elevation velocity, and (k) be the object’s tilt angle 

at time step k  (all of these quantities can be measured 

locally). Hand-designed behaviors and structure are selected 

similar to [17] (Table 2). We have chosen reinforcement 

signal by trial and error and benefiting from our intuition 

about the task ((20) in Table 3). This reinforcement signal 

acts as the reinforcement signal for the structure learning 

method and as the fitness evaluator for the behavior 

Fig. 2. A group of robots lift a bulky object 



 

 

 

evolution. Although this signal is somehow complex, it is 

the general belief of reinforcement learning community that 

the reinforcement function is the most robust and 

transferable description of the task (see [19]). It is possible 

that there exists a simpler reinforcement signal that satisfies 

the designer’s subjective evaluation of the agent. 

Nevertheless, existing a simpler reinforcement signal or not 

does not do anything with our method as the method is an 

optimizer of an objective function – be it the most suitable 

for reinforcing a given task or not. 

In order to clarify this function, let us discuss each term of 

(20). Equation (21) rewards reducing tilt angle and punishes 

a movement that increases it, (22) rewards being in small tilt 

angle and punish its largeness. Note that it rewards low tilt 

angle in early times more than in later time and punishes 

high angles in the later times more than in the beginning in 

order to enforce converging to a satisfactory angle sooner. 

Equation (23) rewards being near the goal and punishes 

being far from it and (24) punishes passing the goal. At last, 

(25) punishes a behavior that make a system move too fast. 

We make five genetic pools each of them is assigned for a 

family of behavior by defining an appropriate state and 

action space for them (Table 4).  

The artificial evolution process selects random behaviors 

from behavior pools and passes them to the agent. The agent 

learns during a few episodes to organize those behaviors and 

then returns a measure for its performance. The measure 

(13) is used to calculate fitness of each behavior (14). 

Crossover rate pc is fixed, but mutation rates ( pmhard

 and 

pmsoft

) can be changed in order to increase the diversity while 

not reducing overall performance. We use following simple 

heuristic for the changing: denoting f (m) as the average 

fitness of agents (13) in generation m , define moving 

average derivation-like operator as 

 

f (m) =

f (k)
k= m L1

m

f (k)
k= m L2

m L1 +1

f (m)
 (26) 

in which L
1
 and L

2
 define a filtering window size for 

approximating the derivative. Then, we change mutation 

rates in the following way: 

 

pmhard
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=

.pmhard

m
f (m) <

min(1, pmhard

m
) f (m) <

 

 
 

  

 (27) 

in which 0 < <1, k >1 , > 0. This rule decreases mutation 

when the performance degrades noticeably and increases 

mutation when the performance is almost constant in hope of 

finding a better solution. A completely similar updating rule 

is used for pmsoft
. We turn mutation off in the last few 

generations in order to make average fitness a better estimate 

of algorithm regardless of the amount of mutation noise. 

There is nothing special about our mutation rate adaptation 

and other methods would work similar. 

In our simulations, we set initial position of robots as 

uniformly distributed starting point between 1 and 2 

( z
i
(0) U(2,3); i =1,2,3). Detailed experiment setup is in 

Table 5. Note that we have not optimized any parameter 

(e.g. genetic operators’ parameters, learning rates, and etc.); 

therefore, it is possible to get even better results. 

The average fitness of agents is depicted in Fig. 3. 

Evolution generates appropriate behaviors in a few 

generations. In fact, there exist a combination of behaviors 

and structures that makes a very good performance from the 

first generation. However, those behaviors are not dominant 

in the population at the beginning and the evolution pushes 

the population toward them gradually. The method that 

learns structure for the set of hand-designed behaviors of 

Table 2, which is indeed the constant line as the co-evolution 

does not change behaviors in this case, performs well but has 

a partially lower performance comparing with the hand-

designed behavior and structure. This is because that in this 

TABLE 3. REINFORCEMENT SIGNAL DEFINITION 
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TABLE 2. HAND-DESIGNED BEHAVIORS 

Push more: v(k +1) = v(k) + v  

Do not go fast: if v(k) > v
max

 then v(k) = v
max

 else do nothing 

Stop at goal: if z(k) zgoal  then stop (v(k +1) = 0) 

Hurry up: if >
0

 and the robot is the lowest one then v(k) =min(v(k) + v,vmax )  

Slow down: if >
0

 and the robot is the highest one then v(k) =max(v(k) v,0)  

T
hand designed = Stop SlowDown HurryUp DontGoFast PushMore[ ]  



 

 

 

case the agent should find an appropriate structure in limited 

number of episodes (20 episodes). In other words, the agent 

has less prior knowledge comparing with the hand-designed 

case (which we consider it as the complete knowledge case). 

Both evolving methods are quite good and outperform the 

hand-designed behaviors/learned structure case and reach 

close to the hand-designed one after turning the mutation off 

in generation 35. The one with learning structure performs 

better in the beginning, but the one with the hand-designed 

structure performs better ultimately. The difference between 

these two cases is similar to the difference between hand-

designed behavior/structure learning and hand-designed 

behavior/hand-designed structure. The reason for the 

superiority of the learning-enabled case in the beginning of 

the evolution is due to the adaptation of the structure with 

the current not-so-good behaviors. Note that the hand-

designed structure is specifically designed for hand-designed 

behaviors and not almost random behaviors in the early 

generations. Also note that inferiority of the cases that do not 

use prior knowledge (such as hand-designed behaviors or 

structure) does not mean that they are not suitable because 

this is our prior knowledge about the problem that enforces 

the selection of this method or the other. 

A sample trajectory of robots and the tilt angle of the 

object for the agent that its behaviors are evolved and its 

structure is learnt are shown in Fig. 4. The team behavior is 

satisfactory as the robots reduce the tilt angle while lift the 

object to the prescribed goal. These results show that our co-

evolutionary scheme can evolve pools of behaviors and the 

structure learning method can find the correct organization 

of them that are competitive to what has been designed by an 

exhaustingly long trial and error in the previous work [17]. 

V. CONCLUSIONS 

We have proposed a hybrid co-evolutionary/learning 

scheme to automate the design of behavior-based systems. 

Artificial co-evolution is used to develop new behaviors and 

learning is used to organize those behaviors in the 

architecture. Instead of evolving a single monolithic 

controller, we have decomposed it into the behavior parts 

and evolve each behavior separately. This Baldwinian 

mixture of learning and evolution performed well in our 

experiment and resulted in behavior-based architectures that 

are competitive to the hand-designed one. Having a prior 

knowledge in the form of the correct structure of the agent 

increases the performance of the system, as the agent does 

not need to search for an appropriate structure during its 

lifetime. However in both cases, the performance was 

satisfactory. Our hybridization of learning and evolution is 

different from most other approaches. In our approach, 

learning and co-evolution are searching two different parts 

of the problem space: hierarchy space and behavior space. 

Learning optimizes the objective function by arranging a set 

of limited number of behaviors in the structure and evolution 

TABLE 4. STATE AND ACTION DEFINITION FOR TO BE LEARNT BEHAVIORS 
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Episode length = 100 steps 

Learning 

Parameters 

Number of episodes = 20, episode

episode )99.0(1.0= ,  Fitness is calculated in the 

last 6 episodes. 

Evolution 

Parameters 

Generations = 40, Population size = 20, Roulette wheel selection - 2 best individuals of 

each pool go directly to the next generation. Initial solutions (for initial population and  

hard mutation): ( )1,0N , 100=N  (14), 8.0=
c
p , 2.0
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optimizes the same objective function by changing 

behaviors’ internal mapping. Learning acts as the fast 

adaptation mechanism for the agent and co-evolution acts as 

the slow but global optimizer. Generally speaking, our 

method is not a mere local search for refining the result of 

the global optimizer.   

There are some important directions for our future 

research. Benefiting from the lifetime experience of the 

agent to provide the co-evolutionary mechanism a better 

(and less noisy) estimate of the fitness of each behavior may 

facilitate the co-evolutionary process. In our current method, 

all contributing behaviors are assigned the same fitness. 

However, usually different behaviors contribute in the 

agent’s overall performance differently. One possible way to 

evaluate each behavior’s contribution is looking at the 

rewards and punishments it received during the agent’s life. 

Learned structures of other agents may be a good prior 

knowledge for the structure of newborn agents. It can 

provide a helpful initial bias for newborn agents; the new 

agents do not need to explore the whole structure space to 

find a suitable arrangement. Finally, it would be helpful to 

apply this kind of problem decomposition (in which 

evolution and learning seek for the solution of the problem 

in different spaces) to other problem domains. Hierarchical 

behavior-based systems are good examples of such 

problems. One may wonder if this kind of decomposition 

can be applied to other problems too. Problems that 

adjusting both structure and components are possible might 

be amenable to this hybridization. 
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Fig. 3. Average fitness comparison for different design methods during 

generations: 1) beh. evolution and str. learning, 2) beh. evolution with 

hand-designed str., 3) hand-designed beh. with str. learning, and 4) hand-

designed beh. and str. . Best results of the first two evolving cases (1 and 

2) are also depicted by dotted lines. Dotted lines across the constant line 

of the hand-designed beh. and str. learning case (3) show one standard 

deviation region across the mean performance. 

Fig. 4. A sample trajectory showing the position of three robots and the 

tilt angle of the object during object lifting after sufficient evolution 

and learning. 

 

 


