

Abstract— Designing an intelligent situated agent is a

difficult task as the designer must see the problem from the

agent’s standpoint considering all its sensors and actuators. We

have devised a co-evolutionary/reinforcement learning hybrid

method to automate the design of hierarchical behavior-based

systems. In our approach, the design problem is decomposed

into two separate parts: developing a repertoire of behaviors

and organizing those behaviors in a structure. Mathematical

formulation shows how to decompose the value of the structure

to simpler components. These components can be estimated

and used to find the optimal organization of behaviors during

the agent’s lifetime. Moreover, a novel co-evolutionary

mechanism is suggested that evolves each type of behavior

separately in their own genetic pool. Our method is applied to

the decentralized multi-robot object lifting task which results in

human-competitive performance.

I. INTRODUCTION

UR long-term research goal is developing general

automatic methods for designing distributed multi-agent

systems. In this paper, we present a hybrid co-

evolutionary/reinforcement learning method for designing

behavior-based systems. Our method uses co-evolutionary

mechanism for behavior design and reinforcement learning

for organizing those behaviors in a hierarchy. The

motivation behind our work is benefiting the global

searching capability of the evolutionary mechanism and fast

adaptation of learning. Moreover, the special decomposition

of the problem into behavior evolution and hierarchy

learning increases the flexibility and the modularity of the

design process.

Behavior-based approach is chosen as the physical agent’s

low-level controller ([1] and [2]). Behavior-based systems

are not only robust to different uncertainties that might be

faced by a robot in the real world, but also are biologically

plausible. There are many different successful applications

of behavior-based systems (e.g. [3], [4], [5], and [6]) most of

them are hand-designed. There is little work on automating

A. M. Farahmand was with the Department of Electrical and Computer

Engineering, University of Tehran, Iran. He is now with the Department of

Computing Science, University of Alberta, Canada (e-mail:

amir@cs.ualberta.ca).

M. Nili Ahmadabadi is with the Department of Electrical and Computer

Engineering, University of Tehran, Iran (e-mail: mnili@ut.ac.ir).

C. Lucas is with the Department of Electrical and Computer

Engineering, University of Tehran, Iran (e-mail: lucas@ipm.ir).

B. N. Araabi is with the Department of Electrical and Computer

Engineering, University of Tehran, Iran (e-mail: araabi@ut.ac.ir).

the design process. In practice, the designer generally uses

bottom-up trial and error approach to devise a behavior-

based system that meets the required performance

objectives. In most cases, this is a difficult task and the

design burden is considered one of the major drawbacks of

behavior-based systems.

Some researches have tried to solve this problem by using

learning or evolution. In one research track, learning is used

to partially solve a subset of existing problems in behavior-

based system design (e.g. [7], [8], and [9]). Most learning

algorithms, which are based on local search, may not find a

good solution in a very big and bumpy parameter space and

become trapped in a local optimum. Despite this

disadvantage, they are relatively fast in finding some

solutions even in non-stationary environments. The other

prominent approach to automate the design process is based

on artificial evolution (e.g. [10], [11], and [12]). Although

evolutionary robotics seems a promising alternative for

automatic robotic system design, it is usually too slow and

cannot handle non-stationary environment easily. Moreover,

the current approach to evolutionary robotics produces non-

modular, non-reusable controllers (See [11] as an alternative

approach that considers the modularity of the controller).

We propose a hierarchical behavior-based system design

methodology in which not only the agent learns to arrange

behaviors in the architecture (like [13]), but also develops

behaviors too. We decompose the problem into two separate

sub-problems: behavior development and arranging

behaviors in the hierarchical structure. A co-evolutionary

mechanism develops new behaviors in separate genetic

(behavior) pools. Each genetic pool is devoted to a single

kind of behaviors (e.g. a pool for “obstacle avoidance

behavior” and a separate pool for “go forward” behavior in a

simple mobile robot navigation task). To develop a new

agent, we collect a behavior instance from each pool to form

a set of behaviors. Thereafter, the agent tries to organize

those inherited behaviors in its architecture guided by the

received reinforcement signal. We use a special form of

reinforcement learning paradigm for hierarchy (structure)

learning (See [14] for more information about reinforcement

learning; see also [15] for a survey of hierarchical

reinforcement learning methods which are similar to our

structure learning). Based on the performance of the agent,

the fitnesses of the corresponding behaviors of each

Hybrid Behavior Co-evolution and Structure Learning

in Behavior-based Systems

Amir massoud Farahmand, Majid Nili Ahmadabadi, Caro Lucas, and Babak N. Araabi

O

behavior pool are updated.

 The hybridization of an evolutionary method and a local

search (seeing learning as a local search) is not new in the

evolutionary computation community. The resulted class of

algorithms, which has many variations, is often called

memetic algorithm [16]. Nevertheless, our hybridization is

different than most other approaches. In our method,

learning and evolution are applied to two different spaces:

hierarchy space and behavior space. Learning optimizes the

objective function by arranging a limited set of behaviors in

the structure and evolution optimizes the same objective

function by changing behaviors’ internal mechanism.

Learning acts as the fast adaptation mechanism for the agent

and evolution acts as the slow but global optimizer.

Finally, we should mention that we have chosen a

specialized version of the Subsumption Architecture (SSA)

([1]) as our hierarchical behavior-based system. The SSA is

a successful and competent behavior-based architecture in

which different behaviors compete with each other to take

control of the agent. The reason for selecting SSA was two-

fold: its flexibility and the existence of structure learning

method for it [13].

After formulating the problem mathematically in Section

I, we propose our structure (hierarchy) learning method in

Section II. In this section, we show how to organize a given

set of behaviors in the architecture. This organization is

based on the received reinforcement signal. In Section III,

we introduce our special co-evolutionary mechanism and

show how to separate behaviors into different genetic pools,

and how to assign fitness to each behavior, and the way to

combine our behaviors. Subsequently, in Section IV, we

show the application of our method in designing a

decentralized multi-robot object lifting task that has been

previously solved by a human and considered as a difficult

problem.

I. PROBLEM FORMULATION

Suppose that we have a set of n behaviors

B
i

{ };i =1,...,n , defined as the following map between

perception and action of the agent:

B
i
: S

i
 A

i
 i =1,...,n

 A
i
= A

i
No Action{ }, S

i
= s

i
 s

i
= M

i
(s); s S

i{ }
S

i
S,A

i
A,M

i
: S S

i

 (1)

where S
i
 is the subset of the state space observable by

behavior B
i
 (Si S j

, in general), A
i
 is the set of B

i
’s

output actions, i.e. actuators, and M
i
 is the mapping that

projects the agent’s total state to its internal perception. Each

behavior B
i
 is augmented with “No Action” (NA). NA is an

action that even if selected, it does not change actuators. NA

is for allowing behaviors not to activate in some regions of

their excitation space. It can be shown that this enables the

agent to achieve higher performance. A behavior B
i
 is

excited if s
i

S
i
 (s

i
 S

i
) and it will become activated

and output a
i
 if a

i
= B

i
(M

i
(s

i
)) = B

i
(s

i
) NA . As an

architecture, we use a special but important case of Purely

Parallel Subsumption Architecture (PPSSA) (Fig. 1). In

PPSSA, all behaviors are parallel and a higher behavior has

the priority to suppress the lower one and to become the

controlling behavior of the agent. Suppose that we have a

set of n behaviors B
i

{ } and a m -behavior architecture T

consisted of m of those behaviors (m n). T(i) denotes the

behavior in the i
th

 layer of T in that the numbering starts

from the lowest layer. We can write

T = [Bind (1) Bind (2) ... Bind (m)]
T m n

ind(i): j (that indicates B j is in the ith layer)
 (2)

Now, we define our structure learning problem. Regarding

reinforcement learning notion, the goal of learning is

maximizing (or minimizing) a function of received

reinforcement signal. Having r
t
 as the reinforcement signal

received at time t (which may be dependent on the system’s

state, selected action, etc.), defining R as a random

variable that indicates the episode’s return for the agent, and

N as the length of episode, the value of the total system

with structure T and set of behaviors B
i

{ } (i =1,...,n)

following policy is

{ }

{ } =
=

=
=

=

)1(behaviors ofset and

 structure agent with the

)1(behaviors ofset and

 structure agent with the1

1

,...,niB

T
RE

,...,niB

T
r

N
EV

i

i

N

t

tT

(3)

In the structure learning, we assume having a suitable

behaviors repertoire and our goal is choosing an ordered

sequence T with m out of n behaviors that maximizes (3).

T
*

= argmax
T

V
T

 (4)

On the other hand, the behavior evolution problem

considers adjusting each behavior B
i
’s mapping from the

Fig. 1. A typical purely parallel Subsumption architecture.

5
B

4
B

3
B

2
B

1
B

st
at

es

output

sensing space (S
i
) to the augmented action space (A

i
) using

evolutionary process. In other words, a behavior must

choose an appropriate action a
i

*
 in each s

i
 that maximizes its

fitness. More detail is presented in Section III.

II. STRUCTURE LEARNING

In this section, we propose a method for structure

learning. Our aim is finding a T
*
 that satisfies (4). To solve

this problem, we should find a solution to the following sub-

problems: 1) Representation: How should the agent

represent knowledge gathered during learning? 2)

Hierarchical Credit Assignment: How should the agent

assign credit to different behaviors and layers in its

architecture? 3) Knowledge Updating: How should the agent

update its knowledge when it receives reinforcement signal?

By defining an appropriate representation, hierarchical credit

assignment and knowledge updating can be solved easily as

it is shown in this section by introducing Zero Order

representation [13].

A. Zero Order Representation

In this representation, we store the expected value of each

behavior in each layer. In other words, the merit of being in

a layer for each behavior is stored. For a given structure T ,

we have:

VT = E R[] = E
1

N
rt

t=1

N

= E
1

N
rt

"L1 is controlling" "L2 is controlling"

... "Lm is controlling"

 t=1

N

= E
1

N
rt "L1 is controlling"{ }

t=1

N

 + ...+ E rt "Lm is controlling"{ }

t=1

N

= E
1

N
rt | L1 is controlling

P(L1 is controlling)

+ E
1

N
rt | L2 is controlling

P(L2 is controlling)

+...+ E
1

N
rt | Lm is controlling

P(Lm is controlling)

 (5)

in which L
i
 is the i

th
 layer, E[1

N r
t
L
i
 is controlling] is the

expected reward of the system when the ith layer takes

control and P(L
i
 is controlling) is its probability of being

the controlling layer assuming that at least one of behaviors

becomes active. Note that this decomposition is possible

because different time instances

t "L
i
 is controlling" in timestep t{ } are mutually exclusive –

only a behavior can be controlling at each moment. Here, we

assume that at least of the behaviors is active (and not

controlling which is just one) at every moment. Note that we

do not assume independence of these events.

Defining),(jiVZO -Zero Order value- as

VZO (i, j) =Vij = E
1

N
rt

B j is the controlling

 behavior in the ithlayer

 (6)

we have

E[
1

N
rt | Li is controlling]

= P B j | Li{ }E
1

N
rt B j is the controlling behavior in Li

j=1

n

= P B j | Li{ }Vij

j=1

n

 i =1,...,m

(7)

in which { }
ij LBP | is the probability that

jB is the

controlling behavior whenever
i
L is the controlling layer.

Altogether,
T
V can be written as

VT = P B j | Li{ }VijP Li is controlling()
j=1

n

i=1

m

 (8)

It is evident that this representation is complete as it can

represent every possible combination of behaviors. The

representation space size is much smaller than a complete

one that stores every possible combination and is

cardinality(ZO) = n m (9)

In order to find the optimal structure, we should select a

one that satisfies (4). To do so, it is certain that we must

have an estimation of
ijV , ()gcontrollin is

i
LP , and

P B j | Li{ }.

According to the definition of
ijV (6), credit assignment is

straightforward:
ijV must be updated whenever

jB is the

controlling behavior in the
th
i layer. Therefore, if layer i is

the controlling layer and
jB has been activated in it while

the system receives reinforcement signal
k
r ,

ijV can be

updated in the following stochastic approximation way:

Vijk+1
= 1 k,ij()Vijk

+ k,ij rk

whenever B j is the controlling

behavior in the ith layer

 (10)

Estimation of ()gcontrollin is
i
LP and { }

ij LBP | is not

difficult and one can set a counter for all of these variables

and increase them accordingly. However, there is another

elegant method to estimate all these values at once. Instead

of updating components of (8) separately, it is possible to

estimate all of them together by defining
ijV
~

 as

˜ V ij = P B j | Li{ }VijP Li is controlling() (11)

 Therefore, we have

˜ V ijn+1
= 1 n,ij() ˜ V n,ij + n,ij

"B j is active at time step n"

"Li is controlling at time step n"

rn

 (12)

Hence, it is now possible to find the arrangement of

behaviors in (8) that satisfies (4). Different methods can

solve the combinatorial optimization problem of finding
*
T

- we have used simple stochastic search in our

implementations: calculating values for many different

randomly chosen structures and selecting the one with the

highest value. This approximate method is suitable for not so

big solution spaces.

III. BEHAVIOR CO-EVOLUTION

In this section, we discuss different aspects of our co-

evolutionary behavior development scheme.

A. Cooperative Behaviors’ Pools

In contrast with most evolutionary approaches in

evolutionary robotics, we do not use a single population of

behaviors. We discriminate behaviors by their supposed

“behavior” and make them evolve in their own behavior

(genetic) pool. Therefore, if n different behaviors are needed

to solve the problem, there will be n separate behavior pools

without any direct interaction.

 In order to evaluate each individual of each pool, we have

proposed a special mechanism, which is inspired from the

Enforced Sub-Population (ESP) [17]: First, a behavior is

selected randomly from each behavior pool to form a set of

behaviors. Thereafter, they are submitted to a trial in that the

agent learns the best arrangement of behaviors using the

introduced structure learning method. It is evident that

arranged architecture may not work properly unless most of

its behaviors are correct. By “correct”, we mean that each of

them performs such that by arranging it in the architecture,

the agent can do something useful. The performance of the

agent is correlated with the performance (i.e. fitness) of each

behavior in it. However, the exact contribution of each

behavior is not known, as the performance of the agent is a

complicated function of all contributing behaviors and their

arranged structure. Nevertheless, the performance of the

agent can be a good measure of the performance of each

behavior. Therefore, we estimate the fitness of each behavior

as the average the fitness of all agents in which that specific

behavior has contribution. If a single instance of a type of

behavior involves in the architecture of a few different

agents, its fitness is defined as the average fitness of all

those agents. More precisely, if we define an average fitness

of a set of behaviors in the agent as

{ }

{ }

==

episodeK Last t

 , agent with the1

episodeK Last t

episodesK Last }{episodesK Last

B
r

K
E

fV

t

BB

 (13)

Then, each behavior’s fitness is defined as

f Bi

j() =
1

N
V

B{ }
i Last k episodes

B{ }
i

 (14)

in which Bi

j
 is the thj individual from the

th
i population

and { }
i

B s are N randomly chosen set of behaviors in

TABLE 1. GENERAL LEARNING/CO-EVOLUTION MECHANISM PSEUDOCODE

o Initialize n different behavior pools for each behavior type B
i

o While ~(stopping condition) {

o Selects n different behavior B
i
 from each behavior pool to make a set of randomly chosen

behaviors B
i

{ }

o Pass B
i

{ } to the agent{

o Initialize Learning parameters

o For a [limited] lifetime do

 Update learning parameters to ensure convergence

 Select an architecture T
*
 that maximizes (8) (Zero Order representation) using

an optimization method (If the architecture is fixed, skip this step).

 Using the provided architecture T
*
 and behaviors B

i
{ }, let the agent interact

with the environment for a while

 Receive reinforcement signal from the critic (that can be external or internal)

 Update the estimation of necessary values (˜ V ij{ } (13))

o Return Fitness (13) to the evolutionary process }

• Share fitness to behaviors according to (14)

• For each behavior pool

o Apply conventional genetic operators to behaviors in order to generate a new population,
i.e. Selection, Crossover, and Mutation.

which { }
i

j

i BB . { }
i

B are chosen randomly, so it is possible

for a specific behavior to be selected more often than others.

However, by performing enough trials, we become sure that

each behavior has involved in the sufficient number of

experiments and the estimated fitness is a rather good

measure for its goodness. Note that like ESP, we share

fitness of the agent to its components according to the

overall fitness of the agent (in our case, the components are

behaviors, and in the ESP, they are neurons).

A real-valued Q-table-like representation with an

appropriate dimension is used for each behavior B
i
 as (note

that this table has no value interpretation as Q-table in

reinforcement learning.)

B
i
(s) : S

i
 A

i
 (15)

Action selection is greedy action selection, i.e.

Bi

j (si) = argmax
ai

Qi

j
si,ai() (16)

The result of this action selection may be an action for the

agent’s actuator or NA. In the latter case, that behavior does

not become active and lets lower behaviors take control of

the agent.

B. Genetic Operators

We use one crossover and two mutations (named hard and

soft) genetic operators. Hard mutation, which is selected

with the probability of
hardmp replaces a Q-Table with a

completely random new one, i.e.

()2,µi
j

i NQ
new

= (17)

in which ()2,µ
i
N is a normal random variable with an

appropriate dimension. Soft mutation perturbs each Q-Table

in order to search nearby points in the solution space.

Therefore, it is a kind of local search commonly used in

simulated annealing. Soft mutation, which happens with

probability of
softmp is defined as

()2,0i
j

i

j

i NQQ
oldnew

+= ,
2

oldj

iQ= (18)

in which we use the individual’s matrix Euclidean norm to

set the variance of perturbation so that the perturbation be in

an appropriate magnitude, i.e. if the matrix’s norm is too

small, perturbing it too much puts it far from its previous

point in the solution space, and vice versa. Crossover

operators is chosen as

)1,0(;)1(UQQQ
oldoldnew k

i

j

i

j

i += (19)

in which)1,0(U is a uniform random number between 0

and 1. Doing so, the evolutionary process tries to exploit the

solution space by linear combination of parents. This may

result in finding a better solution when the fitness landscape

between these two points is convex with a maximum

between them.

In order to summarize our approach, the pseudocode of

our behavior co-evolution and structure learning method is

shown in Table 1.

IV. EXPERIMENTS

We tackle a difficult multi-robot object lifting task in

order to show the effectiveness of our developed method.

This problem had been solved by a traditional approach in

[17], i.e. hand-designing the correct behavior and structure

in an exhausting trial and error procedure. At the time this

problem was solved, it was considered as a challenging

problem in multi-robot systems. Results of this paper is

based on the simulation of the task.

Imagine a situation in which a group of robots (three in

our case) must lift up a bulky and large object (Fig. 2). The

object is of such a size and shape that none of the robots can

grasp it directly. It is shown in [17] that by keeping the tilt

angle of the object in a pre-specified limit, the robots

equipped with some compliance are not required to move,

the object does not hit the robots, and the system is stable.

Moreover, it is easy to design a mechanism for each robot to

measure the object’s tilt angle in its own coordinate (See

[17] for more detailed description). Our goal is finding a

suitable architecture that can solve this cooperative multi-

robot lifting of an unknown object to a set-point while

keeping its tilt angle small with no central control or

communication between the robots. For our experiments, we

consider four cases: 1) evolution of behaviors and learning

of structure, 2) evolution of behaviors with fixed structure

(same as hand-designed structure), 3) learning of structure

with hand-designed behaviors, and 4) hand-designed

behaviors and structure.

Let z(k) be the height of robot-object contact point, v(k)

be its elevation velocity, and (k) be the object’s tilt angle

at time step k (all of these quantities can be measured

locally). Hand-designed behaviors and structure are selected

similar to [17] (Table 2). We have chosen reinforcement

signal by trial and error and benefiting from our intuition

about the task ((20) in Table 3). This reinforcement signal

acts as the reinforcement signal for the structure learning

method and as the fitness evaluator for the behavior

Fig. 2. A group of robots lift a bulky object

evolution. Although this signal is somehow complex, it is

the general belief of reinforcement learning community that

the reinforcement function is the most robust and

transferable description of the task (see [19]). It is possible

that there exists a simpler reinforcement signal that satisfies

the designer’s subjective evaluation of the agent.

Nevertheless, existing a simpler reinforcement signal or not

does not do anything with our method as the method is an

optimizer of an objective function – be it the most suitable

for reinforcing a given task or not.

In order to clarify this function, let us discuss each term of

(20). Equation (21) rewards reducing tilt angle and punishes

a movement that increases it, (22) rewards being in small tilt

angle and punish its largeness. Note that it rewards low tilt

angle in early times more than in later time and punishes

high angles in the later times more than in the beginning in

order to enforce converging to a satisfactory angle sooner.

Equation (23) rewards being near the goal and punishes

being far from it and (24) punishes passing the goal. At last,

(25) punishes a behavior that make a system move too fast.

We make five genetic pools each of them is assigned for a

family of behavior by defining an appropriate state and

action space for them (Table 4).

The artificial evolution process selects random behaviors

from behavior pools and passes them to the agent. The agent

learns during a few episodes to organize those behaviors and

then returns a measure for its performance. The measure

(13) is used to calculate fitness of each behavior (14).

Crossover rate pc is fixed, but mutation rates (pmhard

 and

pmsoft

) can be changed in order to increase the diversity while

not reducing overall performance. We use following simple

heuristic for the changing: denoting f (m) as the average

fitness of agents (13) in generation m , define moving

average derivation-like operator as

f (m) =

f (k)
k= m L1

m

f (k)
k= m L2

m L1 +1

f (m)
 (26)

in which L
1
 and L

2
 define a filtering window size for

approximating the derivative. Then, we change mutation

rates in the following way:

pmhard

m +1
=

.pmhard

m
f (m) <

min(1, pmhard

m
) f (m) <

 (27)

in which 0 < <1, k >1 , > 0. This rule decreases mutation

when the performance degrades noticeably and increases

mutation when the performance is almost constant in hope of

finding a better solution. A completely similar updating rule

is used for pmsoft
. We turn mutation off in the last few

generations in order to make average fitness a better estimate

of algorithm regardless of the amount of mutation noise.

There is nothing special about our mutation rate adaptation

and other methods would work similar.

In our simulations, we set initial position of robots as

uniformly distributed starting point between 1 and 2

(z
i
(0) U(2,3); i =1,2,3). Detailed experiment setup is in

Table 5. Note that we have not optimized any parameter

(e.g. genetic operators’ parameters, learning rates, and etc.);

therefore, it is possible to get even better results.

The average fitness of agents is depicted in Fig. 3.

Evolution generates appropriate behaviors in a few

generations. In fact, there exist a combination of behaviors

and structures that makes a very good performance from the

first generation. However, those behaviors are not dominant

in the population at the beginning and the evolution pushes

the population toward them gradually. The method that

learns structure for the set of hand-designed behaviors of

Table 2, which is indeed the constant line as the co-evolution

does not change behaviors in this case, performs well but has

a partially lower performance comparing with the hand-

designed behavior and structure. This is because that in this

TABLE 3. REINFORCEMENT SIGNAL DEFINITION

v

k

z

k

z

kkkk
rrrrrr ++++= 2121 (20)

<
=

otherwise 1.0

5.0)1()(1
1

kk
r
k

(21)

<
=

otherwise 1.0

1

0
2

k

ôô(k)
krk

(22) <
=

otherwise 1.0

5.0|)(| 1
1

goalz

k

zkz
r (23)

2.0zz(k) 1 goal
2 +>=
z

k
r (24)

maxv) v(k1.0 >=
v

k
r (25)

TABLE 2. HAND-DESIGNED BEHAVIORS

Push more: v(k +1) = v(k) + v

Do not go fast: if v(k) > v
max

 then v(k) = v
max

 else do nothing

Stop at goal: if z(k) zgoal then stop (v(k +1) = 0)

Hurry up: if >
0

 and the robot is the lowest one then v(k) =min(v(k) + v,vmax)

Slow down: if >
0

 and the robot is the highest one then v(k) =max(v(k) v,0)

T
hand designed = Stop SlowDown HurryUp DontGoFast PushMore[]

case the agent should find an appropriate structure in limited

number of episodes (20 episodes). In other words, the agent

has less prior knowledge comparing with the hand-designed

case (which we consider it as the complete knowledge case).

Both evolving methods are quite good and outperform the

hand-designed behaviors/learned structure case and reach

close to the hand-designed one after turning the mutation off

in generation 35. The one with learning structure performs

better in the beginning, but the one with the hand-designed

structure performs better ultimately. The difference between

these two cases is similar to the difference between hand-

designed behavior/structure learning and hand-designed

behavior/hand-designed structure. The reason for the

superiority of the learning-enabled case in the beginning of

the evolution is due to the adaptation of the structure with

the current not-so-good behaviors. Note that the hand-

designed structure is specifically designed for hand-designed

behaviors and not almost random behaviors in the early

generations. Also note that inferiority of the cases that do not

use prior knowledge (such as hand-designed behaviors or

structure) does not mean that they are not suitable because

this is our prior knowledge about the problem that enforces

the selection of this method or the other.

A sample trajectory of robots and the tilt angle of the

object for the agent that its behaviors are evolved and its

structure is learnt are shown in Fig. 4. The team behavior is

satisfactory as the robots reduce the tilt angle while lift the

object to the prescribed goal. These results show that our co-

evolutionary scheme can evolve pools of behaviors and the

structure learning method can find the correct organization

of them that are competitive to what has been designed by an

exhaustingly long trial and error in the previous work [17].

V. CONCLUSIONS

We have proposed a hybrid co-evolutionary/learning

scheme to automate the design of behavior-based systems.

Artificial co-evolution is used to develop new behaviors and

learning is used to organize those behaviors in the

architecture. Instead of evolving a single monolithic

controller, we have decomposed it into the behavior parts

and evolve each behavior separately. This Baldwinian

mixture of learning and evolution performed well in our

experiment and resulted in behavior-based architectures that

are competitive to the hand-designed one. Having a prior

knowledge in the form of the correct structure of the agent

increases the performance of the system, as the agent does

not need to search for an appropriate structure during its

lifetime. However in both cases, the performance was

satisfactory. Our hybridization of learning and evolution is

different from most other approaches. In our approach,

learning and co-evolution are searching two different parts

of the problem space: hierarchy space and behavior space.

Learning optimizes the objective function by arranging a set

of limited number of behaviors in the structure and evolution

TABLE 4. STATE AND ACTION DEFINITION FOR TO BE LEARNT BEHAVIORS

Push

more
{ }=

morePush
S { }NAvkvkvA ,)()1(morePush +=+=

Do not

go fast
{ }{ }5,4,3,2,1,0)()(fast got Don' = kvkvS

()=+
=
NA

vkvkv
A

,),(min)1(max

fast got Don'

Stop at

goal
{ }"0)(","0)("Stop <= goalgoal zkzzkzS

{ }NAkvA ,0)1(Stop =+=

Hurry

up

{ }"",""

robothighest

 robot, middle robot,lowest

00

Hurry

><

=S
(){ }NAvvkvA ,,)(min maxHurry +=

Slow

down

{ }"",""

robothighest

 robot, middle robot,lowest

00

Slow

><

=S
{ }NAvkvA),0,)(max(Slow =

TABLE 5. EXPERIMENT SETUP

Simulation

Parameters
5

max
=v , 1=v , 3=goalz , o

5
0
= , 005.0=T , 3,2,1);3,2()0(=iUz

i
,

Episode length = 100 steps

Learning

Parameters

Number of episodes = 20, episode

episode)99.0(1.0= , Fitness is calculated in the

last 6 episodes.

Evolution

Parameters

Generations = 40, Population size = 20, Roulette wheel selection - 2 best individuals of

each pool go directly to the next generation. Initial solutions (for initial population and

hard mutation): ()1,0N , 100=N (14), 8.0=
c
p , 2.0

0
=

hardmp , 5.0
0

=
softmp

(adaptation mechanism)

Mutation rate

adaptation

95.0= , 2.0= , 06.1= , 01.0= , 5
1
=L , 9

2
=L - Mutation rate is set

zero after generation 34.

optimizes the same objective function by changing

behaviors’ internal mapping. Learning acts as the fast

adaptation mechanism for the agent and co-evolution acts as

the slow but global optimizer. Generally speaking, our

method is not a mere local search for refining the result of

the global optimizer.

There are some important directions for our future

research. Benefiting from the lifetime experience of the

agent to provide the co-evolutionary mechanism a better

(and less noisy) estimate of the fitness of each behavior may

facilitate the co-evolutionary process. In our current method,

all contributing behaviors are assigned the same fitness.

However, usually different behaviors contribute in the

agent’s overall performance differently. One possible way to

evaluate each behavior’s contribution is looking at the

rewards and punishments it received during the agent’s life.

Learned structures of other agents may be a good prior

knowledge for the structure of newborn agents. It can

provide a helpful initial bias for newborn agents; the new

agents do not need to explore the whole structure space to

find a suitable arrangement. Finally, it would be helpful to

apply this kind of problem decomposition (in which

evolution and learning seek for the solution of the problem

in different spaces) to other problem domains. Hierarchical

behavior-based systems are good examples of such

problems. One may wonder if this kind of decomposition

can be applied to other problems too. Problems that

adjusting both structure and components are possible might

be amenable to this hybridization.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobile robot,”

IEEE J. Robotics and Automation R.A-2, pp. 14-23, 1986.

[2] R. A. Brooks, “Intelligent without representation,” Artificial

Intelligence, 47, 1991, pp. 139-159.

[3] R. A. Brooks, “A robot that walks: emergent behavior from a carefully

evolved network,” Neural Computation 1(2), 1989, pp. 252-262.

[4] Z. D. Wang, E. Nakano, and T. Matsukawa, “Realizing cooperative

object manipulation using multiple behavior-based robots,” in Proc.

IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, Osaka,

Japan, 1996, pp. 310–317.

[5] M. J. Matari , “Behavior-based robotics as a tool for synthesis of

artificial behavior and analysis of natural behavior,” Trends in

Cognitive Science, vol. 2, no. 3, 1998, pp. 82-87.

[6] L. Parker, “ALLIANCE: an architecture for fault-tolerant multi-robot

cooperation,” IEEE Trans. on Robotics and Automation, 14 (2), 1998,

pp. 220-240.

[7] P. Maes and R. A. Brooks, “Learning to coordinate behaviors,” in

Proc. AAAI-90, 1990, pp. 796-802.

[8] S. Mahadevan and J. Connell, “Automatic programming of behavior-

based robots using reinforcement learning,” Artificial Intelligence, 55,

1992, pp. 311-365.

[9] M. J. Matari , “Learning in behavior-based multi-robot systems:

policies, models, and other agents,” Cognitive System Research -

special issue on multi-disciplinary studies of multi-agent learning,

Ron Sun, ed., 2(1), 2001, pp. 81-93.

[10] J. Koza, “Evolution of a subsumption architecture that performs a wall

following task for an autonomous mobile robot via genetic

programming,” In Computational Learning Theory and Natural

Learning Systems, vol. 2, S. J. Hanson, T. Petsche, M. Kearns, and

R.L. Rivest, Eds., The MIT Press, 1994, pp. 321-346.

[11] J. Togelius, “Evolution of a subsumption architecture

neurocontroller,” J. Intelligent and Fuzzy Systems,15:1, 2004, pp. 15-

20.

[12] S. Chernova and M. Veloso, “An evolutionary approach to gait

learning for four-legged robots,” In Proc. IEEE/RSJ Int. Conf.

Intelligent Robots and Systems, 2004, pp. 2562-2567.

[13] A. M. Farahmand, M. Nili Ahmadabadi, and B. N. Araabi, “Behavior

hierarchy learning in a behavior-based system using reinforcement

learning,” In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems, 2004, pp. 2050-2055.

[14] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An

Introduction, MIT Press, Cambridge, MA, 1998.

[15] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical

reinforcement learning,” Discrete Event Systems Journal: Special

Issue on Reinforcement Learning, vol. 13, 2003, pp. 41-77.

[16] P. Moscato and C. Cotta, “A gentle introduction to memetic

algorithms,” In Handbook of Metaheuristics, F. Glover and G.

Kochenberger, Eds., Kluwer Academic Publishers, Boston MA, 2003,

pp. 105-144.

[17] F. Gomez and R. Miikkulainen, “Incremental evolution of complex

general behavior,” Adaptive Behavior, 5, 1997, pp. 317-342.

[18] M. Nili Ahmadabadi and E. Nakano, “A constrain and move approach

to distributed object manipulation,” IEEE Trans. Robotics and

Automation, vol. 17, no. 2, 2001, pp. 157-172.

[19] A. Ng, S. Russell, “Algorithms for inverse reinforcement learning,” In

Proc. of the Seventeenth International Conference on Machine

Learning, 2000.

Fig. 3. Average fitness comparison for different design methods during

generations: 1) beh. evolution and str. learning, 2) beh. evolution with

hand-designed str., 3) hand-designed beh. with str. learning, and 4) hand-

designed beh. and str. . Best results of the first two evolving cases (1 and

2) are also depicted by dotted lines. Dotted lines across the constant line

of the hand-designed beh. and str. learning case (3) show one standard

deviation region across the mean performance.

Fig. 4. A sample trajectory showing the position of three robots and the

tilt angle of the object during object lifting after sufficient evolution

and learning.

