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Abstract

Classification-based approximate policy iteration is very useful when the optimal policy is
easier to represent and learn than the optimal value function. We theoretically analyze
a general algorithm of this type. The analysis extends existing work by allowing the
policy evaluation to be performed by any reinforcement learning algorithm, by handling
nonparametric representations of policies, and by providing tighter convergence bounds. A
small illustration shows that this approach can be faster than purely value-based methods.
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1. Introduction

Solving reinforcement learning (RL) problems with large state spaces can be difficult, unless
one exploits some form of regularity or structure of the problem in hand. Recently, several
[nonparametric] algorithms have been suggested that benefit from regularities of the value
function, e.g., Farahmand et al. (2009); Kolter and Ng (2009); Taylor and Parr (2009);
Ghavamzadeh et al. (2011). Nevertheless, this is only one type of regularities of RL problems
and one may also benefit from the regularities of the policy as well. Benefiting from this
less-studied type of regularities has been the motivation behind classification-based RL
algorithms (e.g., Lagoudakis and Parr 2003b; Fern et al. 2006; Lazaric et al. 2010).

The main idea of classification-based approaches is to get a rough estimate of the value
function, find the [noisy] greedy action at several states, and use this information to train a
classifier that generalizes to the whole state space while smoothing out the noise in greedy
actions. In many problems this approach is helpful because of two main reasons. The
first is that at each state even a rough estimate of the value function is often sufficient to
separate the best action from the rest. For example, consider an RL problem with only two
available actions (e.g., go over Atlantic by ship or by airplane). The precise estimation of
the value function may be difficult (e.g., it might be hard to estimate precisely the value of
being seasick); however, if the true values of these two actions are different enough, even an
inaccurate estimate will suffice to tell which one is better. The second is that good policies
are sometimes simpler to represent and learn than good value functions.

Nevertheless, the current classification-based approaches have some drawbacks and can-
not benefit from the present regularities very well. Firstly, most previous works use 0/1
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classification loss, which does not consider the relative importance of different regions of
the state space and may lead to surprisingly bad policies (cf. Section 5). Secondly, exist-
ing approaches estimate the action-value function using rollouts, which is not satisfactory
because it does not benefit from the possible regularities the value function, and hence the
data is not used efficiently.

This paper studies a generic Classification-based Approximate Policy Iteration (CAPI)
framework. In standard API, the algorithm iteratively evaluates a policy (i.e., finding the
action-value function) and then improves it by computing the greedy policy w.r.t. (with
respect to) the most recent value function. In CAPI, however, we fit a policy from a
restricted policy space to the greedy policy obtained at sample points. The error function
is weighted according to the difference between the value of the greedy action and those of
the other actions. This ensures that the resulting policy closely follows the greedy policy
in regions of the state space where the difference between the best action and the rest is
considerable (so choosing the wrong action leads to a large performance loss) but pays less
attention to regions where the value of all actions is almost the same. When the state
space is large, the policy evaluation step cannot be done exactly, so the use of function
approximation is inevitable. CAPI can use any policy evaluation method including, but
not restricted to, rollout-based estimates (as in previous works), LSTD, Fitted Q-Iteration,
and their regularized variants. Note that this is a strict generalization of existing algorithms,
which become special cases of CAPI.

The main theoretical contribution is the finite sample error analysis of CAPI, which
allows general policy evaluation algorithms, handles nonparametric policy spaces, and pro-
vides a faster convergence rate than existing results. Using nonparametric policies is a
significant extension of the work by Fern et al. (2006), which is limited to finite policy
spaces, and of Lazaric et al. (2010) and Gabillon et al. (2011), which are limited to pol-
icy spaces with finite VC dimension. We also provide a new error propagation result for
classification-based RL algorithms that shows the errors at the later iterations play a more
important role in the quality of the final policy. We obtain much faster rates of convergence
than existing results (even when one uses rollouts), because we use a concentration inequal-
ity that is based on the powerful notion of local Rademacher complexity (Bartlett et al.,
2005), which is known to lead to fast rates in the supervised learning scenarios. We also
benefit from the action-gap regularity of the problem, introduced by Farahmand (2011),
which means that choosing the right action at each state may not require a precise estimate
of the action-value function. Whenever this (quite common) regularity is present, the con-
vergence rate of the performance loss is faster than the convergence rate of the action-value
function. This work exploits the action-gap regularity in the analysis of classification-based
RL.

2. Background and Notation

In this section, we define our notation and summarize necessary definitions. For more
information, the reader is referred to Bertsekas and Tsitsiklis (1996); Sutton and Barto
(1998); Szepesvári (2010).
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For a space Ω, with σ-algebra σΩ, M(Ω) denotes the set of all probability measures
over σΩ. B(Ω) denotes the space of bounded measurable functions w.r.t. σΩ and B(Ω, L)
denotes the subset of B(Ω) with bound 0 < L <∞.

A finite-action discounted MDP is a 5-tuple (X ,A, P,R, γ), where X is a measurable
state space, A is a finite set of actions, P : X × A → M(X ) is the transition probability
kernel, R : X × A → R is the reward function, and γ ∈ [0, 1) is a discount factor. Let
r(x, a) = E [R(·|x, a)], and assume that r is uniformly bounded by Rmax. For simplicity, we
focus on MDPs with two actions, i.e., |A| = 2, but with significant extra work, the analysis
can be done for the general case as well. A measurable mapping π : X → A is called a
deterministic Markov stationary policy, or just policy for short. Following a policy π means
that at each time step, At = π(Xt).

A policy π induces the transition probability kernel P π : X →M(X ). For a measurable
subset S of X , we define (P π)(S|x) ,

∫
P (dy|x, π(x))I{y∈S}, in which I{·} is the indicator

function. The m-step transition probability kernels (P π)m : X → M(X ) for m = 2, 3, · · ·
are inductively defined as (P π)m(S|x) ,

∫
X P (dy|x, π(x))(P π)m−1(S|y, π(y)).

Given a transition probability kernel P : X → M(X ), define the right-linear operator
P · : B(X ) → B(X ) by (PV )(x) ,

∫
X P (dy|x)V (y). For a probability measure ρ ∈ M(X )

and a measurable subset S of X , define the left-linear operators ·P : M(X ) → M(X ) by
(ρP )(S) =

∫
ρ(dx)P (dy|x)I{y∈S}. A typical choice of P is (P π)m :M(X )→M(X ).

The value function V π and the action-value function Qπ of a policy π are defined as
follows: Let (Rt; t ≥ 1) be the sequence of rewards when the Markov chain is started from
state X1 (or state-action (X1, A1) for Qπ) drawn from a positive probability distribution

over X (X×A) and the agent follows the policy π. Then V π(x) , E
[∑∞

t=1 γ
t−1Rt

∣∣∣X1 = x
]

and Qπ(x, a) , E
[∑∞

t=1 γ
t−1Rt

∣∣∣X1 = x,A1 = a
]
. The value of V π and Qπ are uniformly

bounded by Qmax = Rmax/(1− γ), independent of the choice of π.
The optimal value and optimal action-value functions are defined as V ∗(x) = supπ V

π(x)
for all x ∈ X and Q∗(x, a) = supπ Q

π(x, a) for all (x, a) ∈ X × A. A policy π∗ is optimal
if V π∗ = V ∗. A policy π is greedy w.r.t. an action-value function Q, denoted π = π̂(·;Q),
if π(x) = argmaxa∈AQ(x, a) holds for all x ∈ X (if there exist multiple maximizers, one of
them is chosen in an arbitrary deterministic manner). Note that a greedy policy w.r.t. the
optimal action-value function Q∗ is an optimal policy.

The L∞(X × A)-norm is defined as ‖Q‖∞ , sup(x,a)∈X×A |Q(x, a)|. We also use a
definition of supremum norm that holds only on a set of points on X . LetDn = {X1, . . . , Xn}
with Xi ∈ X ; then, ‖Q‖∞,Dn , supx∈Dn,a∈A |Q(x, a)|.

3. Framework

CAPI is an approximate policy iteration framework that takes a policy space Π and a
distribution over states ν ∈M(X ) as input, and returns a policy whose performance should
be close to the best policy in Π (Algorithm 1). CAPI starts with an arbitrary policy π(0) ∈ Π

and at each iteration k, it 1) constructs a dataset D(k)
n by drawing n i.i.d. samples from ν,

2) calculates an estimate of the action-value function of the current policy Q̂π(k) (subroutine
PolicyEval), and 3) computes the new policy π(k+1) ← argminπ∈Π L̂

π(k)
n (π) by minimizing
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Algorithm 1 CAPI(Π, ν,K)

Input: Policy space Π, State distribution ν, Number of iterations K
Initialize: Let π(0) ∈ Π be an arbitrary policy
for k = 0, 1, . . . ,K − 1 do

Construct a dataset D(k)
n = {Xi}ni=1, Xi

i.i.d.∼ ν
Q̂π(k) ← PolicyEval(π(k))

π(k+1) ← argminπ∈Π L̂
π(k)
n (π) (classification)

end for

the empirical loss

L̂
π(k)
n (π) ,

∫
X

gQ̂π(k) (x)I{π(x) 6= argmax
a∈A

Q̂π(k)(x, a)} dνn, (1)

where νn is the empirical distribution induced by the samples in D(k)
n and gQ is the action-

gap function defined as follows: for any Q : X ×A → R, gQ(x) , |Q(x, 1)−Q(x, 2)| for all
x ∈ X . Note that the loss (1) is also used by Lazaric et al. (2010).

PolicyEval can be any algorithm that takes a policy π as input and returns an es-
timate Q̂π of Qπ. This includes rollout estimation (in which case CAPI reduces to the
DPI algorithm Lazaric et al. 2010), LSTD-Q (Lagoudakis and Parr, 2003a) and Fitted Q-
Iteration (Ernst et al., 2005), or a combination of both rollout and function approximation
(in which case CAPI becomes the DPI-Critic algorithm Gabillon et al. 2011). The only
important requirement is that Q̂π should be a good approximation of Qπ at the states in

D(k)
n .

4. Theoretical Analysis

In this section we analyze the theoretical properties of the CAPI algorithm and provide
an upper bound on the performance loss (or regret) of the resulting policy π(K). The
performance loss of a policy π is the expected difference between the value of the optimal
policy π∗ and the value of π when the initial state distribution is ρ, i.e.,

Loss(π; ρ) ,
∫
X

(V ∗(x)− V π(x)) dρ(x).

The value of Loss(π(K); ρ) is the main quantity of interest and indicates how much worse
it would be to follow π(K), on average, instead of π∗. The choice of ρ enables the user to
specify the relative importance of different states.

The analysis of the performance loss has two main steps. First, in Section 4.1 we study
the behaviour of one iteration of the algorithm and provide an error bound on the expected
loss Lπ(k)(π(k+1)) ,

∫
X gQπ(k) (x)I{π(k+1)(x) 6= argmaxa∈AQ

π(k)(x, a)} dν, as a function of

number of samples in D(k)
n , the quality of the estimate Q̂π(k) , the complexity of the policy

space Π, and the policy approximation error. In Section 4.2, we analyze how the loss

sequence
(
Lπ(k)(π(k+1))

)K−1

k=0
influence Loss(π(K); ρ).
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4.1. Approximate Policy Improvement Error

Policy π(k) depends on data used in earlier iterations, but is independent of D(k)
n , so we will

work on the probability space conditioned on D(0)
n , . . . ,D(k−1)

n . To avoid clutter, we will
omit the conditional probability symbol and the dependence of the loss function, policy, and

dataset on the iteration number. In the rest of this section, π′ refers to a σ(D(0)
n , . . . ,D(k−1)

n )-
measurable policy and is independent of Dn, which denotes a set of n i.i.d. samples from
the distribution ν ∈ M(X ). We also assume that we are given Q̂π

′
, an approximation of

the action-value function Qπ
′
, that is independent of Dn.

For any π ∈ Π, we define two pointwise loss functions:

l(π) = lπ
′
(x;π) = gQπ′ (x)I{π(x) 6= argmax

a∈A
Qπ
′
(x, a)},

l̂(π) = l̂π
′
(x;π) = gQ̂π′ (x)I{π(x) 6= argmax

a∈A
Q̂π
′
(x, a)}.

For a function l : X → R, define Pnl = 1
n

∑n
i=1 l(Xi) and Pl = E [l(X)]. Here X,Xi ∼ ν.

Now we can define the expected loss L(π) = Pl(π) and the empirical loss Ln(π) = Pnl(π)
(both w.r.t. the true action-value function Qπ

′
) and the distorted empirical loss L̂n(π) = Pn l̂

(w.r.t. the estimate Q̂π
′
). Given the dataset Dn and the action-value function estimate Q̂π

′
,

define

π̂n ← argmin
π∈Π

L̂n(π). (2)

Here and in the rest of the paper we assume that the minimizer above exists. We make the
following action-gap assumption.

Assumption A1 (Action-Gap). For a fixed MDP (X ,A, P,R, γ) with |A| = 2, there
exist constants cg > 0 and ζ ≥ 0 such that for any π′ ∈ Π and all t > 0, we have

Pν
(

0 < gQπ′ (X) ≤ t
)
,
∫
X
I{0 < gQπ′ (x) ≤ t} dν(x) ≤ cg tζ .

The value of ζ controls the distribution of the action-gap gQπ′ (X). A large value of ζ

indicates that the probability of Qπ
′
(X, 1) being very close to Qπ

′
(X, 2) is small and vice

versa. This implies that the estimate Q̂π
′

can be quite inaccurate in a large subset of the
state space (measured according to ν), but its corresponding greedy policy would still be
the same as the greedy policy w.r.t. Qπ

′
. Note that this assumption is not restrictive as

by setting ζ = 0 and cg = 1, we are effectively disabling it. The action-gap regularity is
inspired by the low-noise condition in the classification literature (Audibert and Tsybakov,
2007) and was introduced to RL problems by Farahmand (2011).

Next in Lemma 1, we quantify the error caused by using Q̂π
′
instead of Qπ

′
in calculating

the empirical loss function. Subsequently, Theorem 2 relates the quality of the minimizer of
the empirical loss function to that of the expected loss function. To save space, we omitted
the proofs from this paper.
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Lemma 1 (Loss Distortion Lemma) Fix a policy π′. Suppose that Q̂π
′

is an approxi-
mation of the action-value function Qπ

′
. Given the dataset Dn, let π̂n be defined as (2) and

define π∗n ← argminπ∈Π Ln(π). Let Assumption A1 hold. There exist finite c1, c2 > 0, which
depend only on ζ, cg, and Qmax, such that for any z > 0, we have

Ln(π̂n) ≤ 3Ln(π∗n) + c1

∥∥∥Q̂π′ −Qπ′∥∥∥1+ζ

∞,Dn
+ c2

z

n
,

with probability at least 1− e−z.

To upper bound the expected loss L(π̂n), we need to define a notion of complexity for
the policy space Π. Among possible choices (such as the the VC dimension, metric entropy,
etc), we use localized Rademacher complexity since it has favourable properties that often
lead to tight upper bounds. Moreover, as opposed to the VC dimension, it can be used
to describe the complexity of nonparametric (infinite dimensional) policy spaces. Another
nice property of Rademacher complexity is that it can be empirically estimated. This might
be of great importance in the task of model selection. In this paper, however, we do not
discuss the empirical Rademacher complexity and how it can be used in model selection.

We briefly define the Rademacher complexity (Bartlett et al., 2005; Bartlett and Mendel-
son, 2002). Let σ1, . . . , σn be independent random variables with P {σi = 1} = P {σi = −1} =
1/2. For a function space G : X → R, define RnG = supg∈G

1
n

∑n
i=1 σig(Xi). The

Rademacher average of G is E [RnG], in which the expectation is w.r.t. both σ and Xi.
In order to benefit from the localized version of Rademacher complexity, we need to define
a sub-root function. A non-negative and non-decreasing function Ψ : [0,∞) → [0,∞) is

called sub-root if r 7→ Ψ(r)√
r

is non-increasing for r > 0 Bartlett et al. (2005). The following

theorem is the main result of this subsection.

Theorem 2 Fix a policy π′ and assume that Dn consists of n i.i.d. samples drawn from
distribution ν. Let π̂n be defined as (2). Suppose that Assumption A1 holds. Let Ψ be a
sub-root function with a fixed point of r∗ such that for r ≥ r∗,

Ψ(r) ≥ 2QmaxE
[
Rn

{
lπ
′
(π) : π ∈ Π, P [lπ

′
(π)]2 ≤ r

}]
. (3)

Then there exist c1, c2, c3 > 0, which are independent of n, ‖Q̂π′ − Qπ′‖∞,Dn, and r∗, so
that for any 0 < δ < 1,

L(π̂n) ≤ 12 inf
π∈Π

L(π) + c1r
∗ + c2

∥∥∥Q̂π′ −Qπ′∥∥∥1+ζ

∞,Dn
+ c3

ln(1/δ)

n
,

with probability at least 1− δ.

The upper bound has three important terms. The first term is infπ∈Π L(π), which is the
policy approximation error. For a rich enough policy space (e.g., a nonparametric one), this
term can be zero. The constant multiplier 12 is by no means optimal and can be chosen
arbitrarily close to 1 at the price of increasing other constants. The second important term
is the estimation error of the classifier, which is mainly determined by the behaviour of the
fixed point r∗, whose existence and uniqueness is proved in Lemma 3.2 of Bartlett et al.
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(2005). The value of r∗ captures the local complexity of the space GΠ = {lπ′(π) : π ∈
Π} around its minimizer argminπ∈Π L

π′(π). This complexity is indirectly related to the
complexity of the policy space, but is not the same as it is possible to have a complex
policy space but a very simple GΠ, e.g., in the extreme case in which the reward function
is constant everywhere, GΠ has only a single function. Nevertheless, even a conservative
analysis leads to fast rates: if Π is a space with VC-dimension d, one can show that r∗

behaves as O(d log(n)/n) (cf. proof of Corollary 3.7 of Bartlett et al. 2005). This rate
is considerably faster than O(

√
d/n) behaviour of the estimation error term in the result

of Lazaric et al. (2010). The last important term is ‖Q̂π′−Qπ′‖1+ζ
∞,Dn , whose size depends on

1) the quality of Q̂π
′

at points Dn, which in turn depends on whether the policy evaluation
benefits from regularities of the action-value function (such as its smoothness) and 2) the
action-gap regularity of the problem characterized by ζ. Note that when there is no action-
gap assumption (ζ = 0), the policy evaluation error ‖Q̂π′ −Qπ′‖∞,Dn is not dampened, but
when ζ > 0, the rate improves. The analysis of Lazaric et al. (2010) does not benefit from
this regularity. Currently, the result is only stated when the quality of policy evaluation is
quantified by the supremum norm, but it could be extended to other Lp-norms as well.

4.2. Error Propagation for CAPI

In this section, we state the main result of this paper, Theorem 5, which upper bounds the
performance loss Loss(π(K); ρ) as a function of the expected loss Lπ(k)(π(k+1)) at iterations
k = 0, 1, . . . ,K − 1 and some other properties of the MDP and the policy space Π. First
we introduce two definitions.

Definition 3 (Inherent Greedy Policy Error) For a policy space Π, the inherent greedy
policy error is d(Π) = supπ′∈Π infπ∈Π L

π′(π).

This definition can be understood as follows: Consider a policy π′ belonging to Π. It
induces an action-value function Qπ

′
and consequently a greedy policy w.r.t. Qπ

′
. This

greedy policy may not belong to the policy space Π, so there will be a policy approximation
error infπ∈Π L

π′(π). The inherent greedy policy error is the supremum of this error over all
possible π′ ∈ Π.

Next, we define a concentrability coefficient, required for the error propagation analysis;
it is similar in spirit to those previously defined by Munos (2003, 2007); Farahmand et al.
(2010).

Definition 4 (Concentrability Coefficient) Given ρ, ν ∈ M(X ), a policy π, and two
integers m1,m2 ≥ 0, let ρ(P ∗)m1(P π)m2 denote the future-state distribution obtained when
the first state is drawn from ρ, then the optimal policy π∗ is followed for m1 steps and policy
π for m2 steps. Denote the supremum of the Radon-Nikodym derivative of the resulting
distribution w.r.t. ν by cρ,ν(m1;m2;π) , ‖d(ρ(P ∗)m1 (Pπ)m2 )

dν ‖∞. If ρ(P ∗)m1(P π)m2 is not
absolutely continuous w.r.t. ν, we set c(m1,m2;π) = ∞. For an integer K ≥ 1 and a real
s ∈ [0, 1], define Cρ,ν(K, s) , 1−γ

2

∑K−1
k=0 γ(1−s)k∑

m≥0 γ
m supπ′∈Π cρ,ν(k,m;π′).

We are now ready to state the main result of this paper.
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Theorem 5 Consider the sequence of independent datasets (D(k)
n )Kk=1, each with n i.i.d.

samples drawn from ν ∈ M(X ). Let π(0) ∈ Π be a fixed initial policy and (π(k))
K
k=1 be

a sequence of policies that are obtained by solving (1) using estimate Q̂π(k) of Qπ(k). We

assume that Q̂π(k) is independent of D(k)
n . Suppose that Assumption A1 holds and r∗ is

the fixed point of a sub-root function Ψ that for any π′ ∈ Π and r ≥ r∗ satisfies Ψ(r) ≥
2QmaxE

[
Rn

{
lπ
′
(π) : π ∈ Π, P [lπ

′
(π)]2 ≤ r

}]
. Then there exist constants c1, c2, c3 > 0

such that for any 0 < δ < 1, for E(s) defined as (0 ≤ s ≤ 1)

E(s) , 12d(Π) + c1r
∗ + c2 max

0≤k≤K−1

[
γ(K−k−1)s

∥∥∥Q̂π(k) −Qπ(k)∥∥∥1+ζ

∞,Dn

]
+ c3

ln(K/δ)

n
,

we have with probability at least 1− δ,

Loss(π(K); ρ) ≤ 2

1− γ

[
inf

s∈[0,1]
Cρ,ν(K, s) E(s) + γKRmax

]
.

All the discussion after Theorem 2 applies here too. Moreover, the new error propagation
result shows improvement compared to Lazaric et al. (2010). The current result indicates
that the error ‖Q̂π(k) − Qπ(k)‖∞,Dn is weighted proportional to γ(K−k−1)s, which means
that the errors at earlier iterations are geometrically discounted. So, if one has finite
resources (samples or computational time), it is better to obtain better estimates of Qπ(k)

at later iterations. The same advice holds for the classifier too: using more samples at
later iterations is beneficial (though this is not apparent from the bound, as we fixed n
throughout all iterations). See Farahmand et al. (2010) for more discussion on this type of
error propagation results.

5. Illustration

The goal of this illustration is to show that using action-gap weighted loss can lead to signifi-
cantly better performance compared to 1) pure value-based approaches and 2) classification-
based API with 0/1 loss. Here we compare CAPI with Value Iteration (VI), Policy Iteration
(PI), and a modified CAPI that uses 0/1-loss on a simple 1D chain walk problem (based
on the example in Section 9.1 of Lagoudakis and Parr 2003a). The problem has 200 states,
the reward function is zero everywhere except at states 10 − 15 (where it is +1 for both
actions) and 180− 190 (where it is +0.1 for both actions), and γ = 0.99.

Note that the model is known. Moreover, CAPI is run when the measure νn in the
loss function (1) is the uniform distribution over states, so there is no “sampling” from the
states. The value of Q̂π(k) at iteration k of CAPI is obtained by running just one iteration
of evaluation, i.e., Q̂π(k) = T π(k)Q̂π(k−1) , in which T π(k) is the Bellman operator for policy
π(k). This makes the number of times CAPI queries the model similar to VI. The policy
space Π used in CAPI is defined as the space of the indicator functions of the set of all half
spaces, i.e., the set of policies that choose action 1 (or 2) on {1, . . . , p} and action 2 (or 1)
on {p + 1, . . . , 200} for 1 ≤ p ≤ 200. This is a very small subset of all possible policies.
We intentionally designed the reward function such that the optimal policy is not in Π, so
CAPI will be subject to policy approximation error.
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Figure 1: Performance loss for CAPI, Value Iteration, Policy Iteration, and 0/1 loss given
Q∗. The problem is a 1D random walk with 200 states and γ = 0.99.

Figure 1 shows that the performance loss of CAPI converges to this policy approximation
error, which is the minimum achievable given Π. The convergence rate is considerably faster
than that of VI and PI. This speedup is due to the fact that CAPI searches in a much smaller
policy space compared to VI or PI. The comparison of CAPI and VI is especially striking
since both of them use the same number of queries to the model. We also report the
performance loss of a modified CAPI that uses the 0/1 loss and the exact Q∗ (so there
will be no estimation error). The result is quite poor. To understand this behaviour, note
that the minimizer of the 0/1 loss is a policy that approximates the greedy policy (in this
case, the optimal policy) without paying attention to the action-gap function. Here the
minimizer policy is such that it fits the greedy policy in a large region of the state space
where the action-gap is small and differs from the greedy policy in a smaller region where the
action-gap is large. This selection is poor as it ignores the relative importance of choosing
the wrong action in different regions of the state space.

6. Conclusion

We proposed a general family of classification-based RL algorithms (which has some existing
algorithms as special cases). Our approach uses any policy evaluation method of choice,
defines an action-gap weighted loss function and then minimizes the loss. We provided
an error upper bound that is tighter than existing results and applies to nonparametric
policy spaces as well. An open question is how to efficiently solve the optimization problem.
The use of surrogate losses seems to be the answer, but theoretical properties should be
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investigated further. Another question is how to choose the sampling distribution ν, which
can greatly affect performance. One may even change the sampling distribution at each
iteration to actively obtain more informative samples. How this should be done remains to
be answered.
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