
 
 

  

Abstract—Channel assignment problem in cellular 
communication is a difficult combinatorial optimization 
problem. There is no exact polynomial-time solution for it and 
searching the whole solution space is infeasible for large 
problems. By defining the problem’s cost function as the energy 
function of a chaotic Hopfield neural network, we devise a 
framework for finding competitive suboptimal or even optimal 
solutions for combinatorial optimization problem in general, 
and channel assignment problem in particular. In our 
architecture, we inject chaotic noise in order to help the 
network escape from local minima of the energy function while 
we enforce problem constraints by external inputs of neurons. 
Experimental results show the superiority of our method to 
other methods. 

I. INTRODUCTION 
ombinatorial Optimization Problems (COP) arise in 
many application domains of science and technology 

like job scheduling, VLSI connection optimization, and 
channel assignment in cellular communication. In this paper, 
we introduce a Chaotic Simulated Annealing-enhanced 
Hopfield Neural Network (CSA-HNN) meta-heuristic to 
effectively solve the channel assignment problem.  Channel 
assignment problem (CAP) is a sample of COP that arises in 
cellular telecommunication. The region we want to cover by 
our telecommunication system is divided to many smaller 
geographical subregions called cell. We have a limited 
number of frequency channels that must be assigned to cells. 
Nearby cells have interference with each other, so we need 
to assign distant frequencies (in frequency domain) to 
nearby cells. The channel assignment problem is assigning 
our channels to cells in order to reduce the interference.  

Combinatorial optimization problem is a 0-1 optimization 
problem than can be considered as the generalization of 
graph coloring problem, which is NP-Hard. It is evident that 
searching the entire solution space is not possible for big 
problems. Therefore, having a bunch of heuristics and meta-
heuristics for finding appropriate sub-optimal solutions 
seems inevitable [1]-[3]. These heuristic methods may not 
find the optimal solution in every case, but they can find a 
good solution most times. Depending on the situation, a 
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good heuristic might be considered as the one that results in 
solution closer to the optimal one, or the one that can find an 
acceptable solution in a reasonable time, or whole range of 
methods between these two. In this paper, we propose a 
chaotic simulated annealing-enhanced Hopfield Neural 
Network (HNN) that not only can find very good and even 
optimal solutions, but also can find them very fast. This 
latter issue is mainly due to the possibility of massively 
parallel hardware implementation of the Hopfield neural 
network base of CSA-HNN. 

The use of HNN for solving COP emerged after 
demonstration of its ability in solving traveling salesman 
problem (TSP) by Hopfield and Tank [4]. The technique is 
based on the energy minimizing property of HNN. 
Unfortunately, it was shown that the simple HNN often 
yields infeasible solutions for TSP [5]. Although there were 
some efforts to cure this problem (e.g. changing energy 
function or confine solutions to constraint plane), results 
were not comparable to ones obtained from traditional 
techniques. The main reason of this inefficiency is the 
structure of energy function in HNN, which has many local 
minima in which the network get stuck in one of them due to 
its strictly energy reducing behavior [2]. 

To overcome this difficulty we can modify the behavior of 
the network in order to let it get out of local minima. For 
instance, in [1] and [2], they use the idea of simulated 
annealing and permit HNN to occasionally change its state 
in ascending direction of Lyapunov energy function while 
reducing this probability as network iterates. As another 
approach to satisfy constraints and prohibit infeasible 
solutions, [3] and [6] change the external input of each 
neuron and penalize the neuron proportional to the amount 
of deviation from the constraint in which the neuron 
participates. By doing so, they solve channel assignment 
problem. We benefit from this idea in our architecture. 

There is a new trend in using chaotic neural networks in 
order to solve COP [7]-[11]. Adding chaotic noise or 
similarly letting the network to behave chaotically seems to 
enhance the ability of HNN in searching the global 
minimum of its Lyapunov energy function. In this paper, we 
use a modified version of [11] to solve channel assignment 
problem. 

The organization of this paper is as follows: The COP is 
formulated in Section II. Afterward, the relation between the 
COP and the HNN and the formulation of HNN with 
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decaying chaotic noise is presented in Section III. The 
channel assignment problem in described in Section IV and 
the experimental results that show the superiority of our 
method will be presented in Section V. 

I. COMBINATORIAL OPTIMIZATION PROBLEM 
In this section, a brief formulation of a class of COP is 

provided. Although in this paper we provide experimental 
results only for CAP, the method should work in similar 
problems too. Quadratic form of 0-1 COP is defined as 
follows [2]: 
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where X  is the solution matrix, F(X)  is a quadratic cost 
function, and Q , C , and D are constants that define the 
problem. The first term (quadratic) of F(X)  indicates the 
cost of being “on” (i.e. 1) of two elements of the solution 
together and the second one (linear) indicates being “on” 
state of a single one. The first constraint is called demand or 
transportation constraint and the second one is named 
assignment constraint [2]. These constrains are commonly 
encountered in many combinatorial optimization problems. 
For example, the TSP’s constraints are 1=kD . 

II. HOPFIELD NEURAL NETWORK WITH DECAYING CHAOTIC 
NOISE 

Hopfield neural network comprises a fully interconnected 
system of n neurons. Neuron i  has internal state iu  and 

external (to the network) input signal iI . The dynamical 
equation of the system is described by the following 
equations [12]: 
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A common activation function is sigmoidal function: 
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Assuming that w  is symmetric and )(1 uf −  is 

continuous and monotonously increasing function of u , it 
can be shown that the system described by (1) and (2) 
converges to a local minimum of the following Lyapunov 
energy function: 
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Without going further, we know that the stable points of 

the very high-gain, continuous deterministic Hopfield model 
corresponds to the stable points of the discrete stochastic 
Hopfield model with the following Lyapunov energy 
function [12]: 
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Comparing (6) with the cost function of COP (1), one can 

easily see the similar quadratic and linear terms in both of 
them. Therefore, whenever there is a COP in the form of (1), 
one can construct a HNN that has the same energy function 
(6) as the cost function F(X) . Benefiting from the fact that 
the dynamics of HNN tries to minimize (6), we can use 
HNN to solve (1). However, before that, we need a method 
to incorporate constraints of problem (1) into the dynamics 
of the HNN. Including the constraints in the cost function as 
a penalty term ([3] and [11]) or enforcing solution vector to 
lie in the constraints plane ([1] and [2]) would do so. 

The chaotic Hopfield neural network used in this paper is 
mainly in the form of [11], which is defined as  
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where (i=1,2,…,n) is the neuron index, )(tui , )(txi  and iI  
are the internal state, output and input bias of neuron i . α  
and γ  are positive scaling parameters for input and chaotic 
noise and ε  defines the gain of the output  (activation) 
function. )(tiη  is an external chaotic noise for neuron i .  

We may use different mechanisms for generating chaotic 
noise with different properties, but here, a modification of 
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logistic map is used 
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where 10 << β . Initializing a  to a large value makes the 
process chaotic and decreasing it will lead to a stable 
solution. The idea of chaotic simulated annealing (CSA) is 
starting from a large a  (i.e. a(1) >> 1) and then decreasing 
it through time. Large values of a  force the HNN to behave 
chaotically; therefore, it explores the solution space with a 
considerable randomness. Gradually decreasing a  change 
the behavior of the injected noise from chaotic to stable 
fixed-point (i.e. constant) through reversed period-doubling 
bifurcations. After becoming stable, the noise does not affect 
the network at all and the system remains in the same local 
basin of attraction afterwards. If the previous exploration 
was sufficient, we may hope that we would find the right 
basis of attraction through the chaotic to stable dynamics 
transition. 

Before formulating channel assignment problem, it is 
necessary to point out that this chaotic model of HNN is not 
the only way of making a chaotic simulated annealing 
(CSA). In this paper, we used external chaotic noise, but 
there are other methods, which have internal chaotic 
dynamics ([7] and [8]), namely decaying self-coupling of [7] 
and decaying time step of [8]. Despite these differences, in 
[9] they introduced a unified framework for representing the 
energy function of different methods of making a chaotic 
HNN. The modified energy function is defined as 
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in which H is a new term that modifies the energy landscape. 

In different methods of CSA, the way the energy function 
is modified is different and in the one we use here, it can be 
expressed as 

 

∑−=
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in that iη  is defined as [13]. 

III. CHANNEL ASSIGNMENT PROBLEM 
These days, there are increasing demands for cellular 

mobile communication systems. Like any other engineering 
problem, optimizing our resources in this problem is crucial. 
In cellular mobile communication, the frequency channels 
are our resources and it is a need to use them wisely. 

The cellular mobile communication problem is as follows 
([1] and [3]): In cellular communication, the geographical 
area is divided into many smaller regions, which are called 
cells. Each cell has its own caller traffic and according to 
that, a demand for the cell is defined. Some cells’ demand is 
high (e.g. business centers) and some cells’ demand is low 
(e.g. low-population regions in the area). In cellular 
communication, we have a limited number of frequency 
channels. Each caller occupies each channel when s/he uses 
the network. The main problem is interference between these 
frequency channels. The closer frequencies of two callers 
are, the more interference between those channels exists. 
This interference depends on the distance between two 
callers. If they are far from each other (i.e. two cells are far 
in the network), the interference is low and vice versa. In 
order to use the frequency channels efficiently, one needs to 
assign close frequencies to faraway cells.  

There are three sources of interference and thus three 
constraints in this problem: interference between two callers 
in the same cell (co-site interference), interference between 
two callers using the same channel within some spatial range 
(co-channel interference), and interference between two 
callers in adjacent cells using adjacent channels (adjacent 
channel interference). The amount and severity of these 
interferences can be calculated considering the topological 
and physical nature of the region. The demands can also be 
estimated considering the population and other related 
factors in each cell. The objective is assigning channels for 
each cell in order to minimize the interference while keeping 
demands satisfied. It may happen that one has enough 
frequency channels, but due to incorrect cell/channel 
assignment, s/he cannot use all of her/his channels, so the 
efficiently of the network would be degraded. 

The channel assignment problem can be divided into 
static and dynamic cases. In static channel assignment 
(SCA), we assign channels only once in the network design 
phase, but in dynamic channel assignment (DCA) we change 
the assignment as the traffic’s demand of the network 
changes. Only the solution of SCA is considered in this 
paper. However, if we can implement our method efficiently 
and have access to the latest information about the demand 
of each cell, we can re-run the SCA continually to reassign 
channels during the network run. 

Suppose there are N  cells and M  channels. The demand 
of the i th cell is ),...,1( NiDi = . Define compatibility 

matrix, NN ×C  as the matrix that shows the severity of 

interference between cells. iiC  is the minimum required 

frequency distance between two assigned channels in cell i  
and ijC  indicates the required distance between cell i  and 

j . We can define the COP as follow [1] 
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This minimization problem is the same as the COP we 

defined before - except that it has not any linear term (the 
other constraint is included in C  matrix). In order to include 
constraints, we use penalty term method as [3]. After 
comparing this new problem with Lyapunov energy function 
of HNN, we find the following weight matrix and inputs for 
the network [3]: 
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where ijδ  is the Kronecker delta function, cscd = iiC  

(which is considered to be constant among all cells) and 
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and 0=ijijW  (self-feedback is not allowed). The external 

input iI is defined as 
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In order to force the network to converge to feasible 

solutions, following the idea of Kim ([3]) we define another 
external input that enforces demand constraint to be satisfied 
as 

 








 −= ∑
=

M

k
ikiE XDI

ij
1

.  (19) 

 
In addition, we inject our chaotic noise (9) to increase the 

chance of escaping from local minima. Now, we have  
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There are some remarkable points. First is the 

modification we have made in CSA. In [11], they use 
monotonically decreasing )(ta  so that the network has 

chaotic behavior only in the beginning (although setting β  
a small value, increase the number of iterations with the 
chaotic behavior). Assigning β  not so small (around 0.05) 
may deteriorate the ability of network to converge to global 
minima and assigning it a very small number will increase 
the number of iterations needed for convergence. Therefore, 
we have decided to let β  be not so small (so noise would 

change fast from chaotic to stable behavior), but reset )(ta  

to its initial value ( )0(a ) whenever the value of cost 
function which we calculate in each iteration does not 
change anymore. Thus, the network’s dynamical behavior 
might change from chaotic to stable several times during the 
run. The second note is that the network’s output, by 
construction, is not a binary value, but a continuous value 
between 0 and 1. Remembering that a solution of COP 
should be 0 or 1, we need to devise a method to infer 0/1 
solution from the continuous-value outputs. Setting ε  in 
(21) a small value makes sigmoid behave like a threshold 
function (so, it outputs close to zero or one) but it was not as 
satisfactory as our approach. Our method is simply selecting 
the iD  greatest value of i th row of X as follows 

 

xik
d (t) =

1    if xik (t) ≥ Di
th value in ith  row

0   otherwise
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After convergence, the method is the same as others (like 

relying on networks high-gain feature) but it works better in 
early iterations. The third note is that we update HNN 
asynchronously and each iteration in this paper means the 
whole updating cycle.  

IV. EXPERIMENTS 
In this section, we apply our method to two different SCA 

dataset. One of them is small artificial one (adopted from 
[1]) and we call it as EX dataset (Table I). These two 
problems have interference-free solutions while satisfying 
constraints. The other problem is a real-world 
telecommunication problem that has larger number of cells 
and channels than the previous problem. We call it as KUNZ 
dataset. KUNZ dataset is derived from an actual 24x21km 
area around Helsinki, Finland as used by Kunz [13]. In its 
original form, the region is divided into 25 cells while 73 
channels are available. There are some modified versions, 
which use only a subset of the whole cells and channels. 
They are important because there is no interference-free 
solution for them, thus comparing different methods on 
those cases can show the ability of different methods to find 
the best solution. The size of KUNZ problems is defined in 
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Table II. For the exact definition of C and D see [1]. 
For our simulations, we used the following parameters: 
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and the simulation lasted at most 500 steps for all problems. 
For gaining more insight into the effect of CSA, Fig. 1, 2, 
and 3 show a typical time evolution of energy function for 
EX2 problem using CSA (CSA-HNN), Hill-Climbing 
method (HC-HNN) of [3], and simple HNN, respectively. It 
is seen in Fig. 1 that CSA-HNN can find the best solution 
after exploring the state space guided by chaotic noise. The 
noise decreases gradually and the network converges to a 
stable fixed-point. In Fig. 2, the result of HC-HNN for this 
problem is depicted. It escapes a few times from local 
minima, but it cannot find the optimum value. The simple 
HNN decreases the energy function monotonically, so it 
cannot escape any local minimum. The same behavior is 
observed for other examples too. An interference-free 
solution of EX2 is depicted in Fig. 4. Based on the 
parameters, the speed of convergence can be low or high. 
We use the same set of parameters for all problems of this 
paper. It is expected that this specific parameters are not the 
best possible set for this EX2 and faster convergence rate 
would be possible (as this problem is much smaller than 
KUNZ, so it is probable that faster deteriorating noise would 
work too). 

Results of the simulation and comparison with other 
method for all problems are listed in Table III. 
GAMS/MINOS, Steepest Descent (SD) heuristics, 
Simulated Annealing (SA), Simple Hopfield network (HN) 
and hill-climbing Hopfield network (HCHN) are taken from 
[1] and TCNN is taken from [10]. Note that HCNN is a Hill-
Climbing HNN that is different from Kim’s ([3]) and is 

enhanced by using simulated annealing-like behavior. 
TCNN is a chaotic HNN, which uses self-coupling decaying 
method of [7] for being chaotic. Placing ‘N/A’ instead of a 
value may mean two things: there is no data available 
(TCNN case) or we have not yet run that experiment enough 
times to have an estimation of the average cost (KUNZ2 and 
KUNZ4 with CSA-HNN). When average values are 
available, we did the experiment for at least ten times except 
in KUNZ3 that we did it for five times. However, as in the 
KUNZ3 case the average cost is equal to the minimum cost, 
we infer that our method will find the best solution in every 
trial with high probability. It is seen that the performance of 
CSA-HNN is the best for all problems. Also its average 
performance (for the cases that this information is available) 
is equal to the best performance. No other method shows this 
property. 

We have done some robustness tests on parameters of the 
method and changed γ  and β  in order to investigate their 
effect on feasibility of solutions (whether it can find a 
solution with global minimum cost or not) and convergence 
speed. Our preliminary investigation shows that the 
performance of the system is somehow robust to its 
parameters’ variations. More investigation is needed for a 
precise statement. 

The computation time of these experiments ranges from a 
few minutes to a few hours. For instance, KUNZ4 takes 
about seven hours in our MatLab implementation. We did 
not benefit from the capability of Matlab in performing 
matrix calculations. Therefore, it is expected that if we had 
implemented our method in a language like C, we would 
have gotten results much faster. However, as we argue in the 
conclusion, this is not a restricting issue. 

TABLE I 
PROBLEM DESCRIPTION FOR EX DATASET 
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TABLE II 
PROBLEM DESCRIPTION FOR KUNZ DATASET 

Problem N M C D 

KUNZ1 10 30 [ ]103C  [ ]103D  

KUNZ2 15 44 [ ]153C  [ ]153D  

KUNZ3 20 60 [ ]203C  [ ]203D  

KUNZ4 25 73 [ ]253C  [ ]253D  



 
 

 

V. CONCLUSION 
In this paper, we applied chaotic simulated annealing-

enhanced Hopfield neural network in order to solve a 
difficult COP. The results show the effectiveness of the 
framework in solving COP. Adding chaotic noise enhances 
the capability of HNN to escape from local minima and thus 
increases the chance of finding the global minimum. One 
may argue that this method is slower comparing to simple 
HNN or other heuristics. The important issue is that the 
speed of convergence is not a big issue for many problems 
like channel assignment problem if the computation time is 
not exponential in the number of states (which is of course 
not in this case). One reason is that no one needs to find a 
solution to SCA in real-time as this optimization is done in 
network design phase in which a few minutes or even a few 
hours are not important. The other reason is the special 
massively parallel structure of HNN that lets us implement 
the method in hardware. This way, we can even reach near 
real-time performance, as a few hundreds of iterations are 
not a big deal for a parallel hardware. 

Our future research is focused on four issues: 
1) Investigations on the effect of parameters’ variations 
in the problem solving ability (like what [9] did) must be 

made. Our early simulations show that the performance 
is rather robust to parameters’ changes. 
2) Comparing this method of making chaotic network 
with other ones (specifically with [7] and [8]).  
3) Use a progress estimator for changing the amount of 
chaotic noise injected in the network depending on the 
quality of the solution instead of using a fixed schedule.  
4) Applying this methodology to other combinatorial 
optimization problems. 

REFERENCES 
 
[1] K. Smith and M. Palaniswami, “Static and dynamic channel 

assignment using  neural networks,” IEEE J. Selected Areas in 
Comm., vol. 15, no. 2, 1997, pp.  238-249. 

[2] K. Smith, M. Palaniswami, and M. Krishnamoorthy, “Neural 
techniques for combinatorial optimization with applications,” IEEE 
Trans. Neural Network,  vol. 9, no. 6, 1998, pp. 1301-1381. 

[3] J. S. Kim, S. H. Park, P. W. Dowd, and N. M.  Nasrabadi, “Cellular 
radio channel assignment using a modified hopfield network,” IEEE 
Trans. Veh. Technol.,  vol. 46, no. 4, 1997, pp. 957-967. 

[4] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in 
optimization problems,” Biological Cybernetics, vol. 52, 1985, pp. 
141-152. 

[5] G. V. Wilson and G. S. Pawley, “On the stability of the tsp algorithm 
of  hopfield and tank,” Biol. Cybern., vol. 58, 1988, pp. 63–70. 

[6] M. J. Yazdanpanah, E. Madanian, and A. M. Farahmand, “Channel 
assignment in cellular communications using a new modification on 
hopfield network,” accepted for publication in Iranian Journal of 
Science and Technology, Transaction B: Engineering, 2005. 

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

iteration

co
st

 (
en

er
gy

)

Fig 3. Energy (cost) function changes for simple 
HNN through iterations of the network. It cannot 
find the optimal solution of the problem. 

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

18

20

iteration

co
st

 (
en

er
gy

)

Fig 1. Energy (cost) function changes for CSA-
HNN through iterations of the network. It finds the 
optimal solution of the problem. 

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

iteration

co
st

 (
en

er
gy

)

Fig 2. Energy (cost) function changes for HC-HNN 
through iterations of the network. It cannot find the 
optimal solution of the problem. 

Fig 4. An interference-free assignment for EX2 problem. 



 
 

[7] L. Chen and K. Aihara, “Chaotic simulated annealing by a neural 
network model with transient chaos,” Neural Networks, 8 (6), 1995, 
pp. 915-930. 

[8] L. Wang and K. A. Smith, “On chaotic simulated annealing,” IEEE 
Trans. Neural Networks, vol. 9, no. 4, 1998, pp. 716-718. 

[9] T. Kwok and K. A. Smith, “Experimental analysis of chaotic neural 
network  models for combinatorial optimization under a unifying 
framework,” Neural Network (13), 2000, pp. 731-744. 

[10] Y. Zhang, Z. He, Ch. Wei, and  L. Yang, “Parametric controlled 
transient chaotic neural network for the channel assignment problem,” 
IEEE Asia-Pacific Conf. on Circuits and System, 2000, pp. 331-334. 

[11] Y. He, “Chaotic simulated annealing with decaying chaotic noise,” 
IEEE  Trans. Neural Networks, vol. 13, no. 6, 2002, pp. 1526-1531. 

[12] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd 
edition, Prentice  Hall International, 1999, pp. 680-696. 

[13] D. Kunz, “Channel assignment for cellular radio using neural 
networks,” IEEE Trans. Veh. Technol., vol. 40, no. 1, 1991, pp. 188–
193. 

 
 

TABLE III 
TEST PROBLEMS FOR GAMS/MINOS-5, STEEPEST DESCENT (SD), SIMULATED ANNEALING (SA), SIMPLE HOPFIELD NETWORK (HN), HILL-

CLIMBING HOPFIELD NETWORK (HCHN), TRANSIENT CHAOTIC NEURAL NETWORK (TCNN), AND CHAOTIC SIMULATED ANNEALING – 
HOPFIELD NEURAL NETWORK (CSA-HNN) (THIS WORK). 

 GAMS SD SA HN HCHN TCNN CSA-HNN 
Problem Min Av. Min Av. Min. Av. Min Av. Min Av. Min Av. Min 
EX1 2 0.6 0 0.0 0 0.2 0 0.0 0 N/A N/A 0.0 0 
EX2 3 1.1 0 0.1 0 1.8 0 0.8 0 N/A N/A 0.0 0 
KUNZ1 28 24.4 22 21.6 21 22.1 21 21.1 20 20.6 20 20.0 20 
KUNZ2 39 38.1 36 33.2 32 32.8 32 31.5 30 31.2 30 N/A 30 
KUNZ3 13 17.9 15 13.9 13 13.2 13 13.0 13 13.0 13 13.0 13 
KUNZ4 7 5.5 3 1.8 1 0.4 0 0.1 0 0.5 0 N/A 0 


