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Abstract

We address the question of how the approximation error/Bellman residual at each
iteration of the Approximate Policy/Value Iteration algorithms influences the qual-
ity of the resulted policy. We quantify the performance loss as the Lp norm of the
approximation error/Bellman residual at each iteration. Moreover, we show that
the performance loss depends on the expectation of the squared Radon-Nikodym
derivative of a certain distribution rather than its supremum – as opposed to what
has been suggested by the previous results. Also our results indicate that the
contribution of the approximation/Bellman error to the performance loss is more
prominent in the later iterations of API/AVI, and the effect of an error term in the
earlier iterations decays exponentially fast.

1 Introduction

The exact solution for the reinforcement learning (RL) and planning problems with large state space
is difficult or impossible to obtain, so one usually has to aim for approximate solutions. Approximate
Policy Iteration (API) and Approximate Value Iteration (AVI) are two classes of iterative algorithms
to solve RL/Planning problems with large state spaces. They try to approximately find the fixed-
point solution of the Bellman optimality operator.

AVI starts from an initial value function V0 (or Q0), and iteratively applies an approximation of
T ∗, the Bellman optimality operator, (or Tπ for the policy evaluation problem) to the previous
estimate, i.e., Vk+1 ≈ T ∗Vk. In general, Vk+1 is not equal to T ∗Vk because (1) we do not have
direct access to the Bellman operator but only some samples from it, and (2) the function space
in which V belongs is not representative enough. Thus there would be an approximation error
εk = T ∗Vk − Vk+1 between the result of the exact VI and AVI.

Some examples of AVI-based approaches are tree-based Fitted Q-Iteration of Ernst et al. [1], multi-
layer perceptron-based Fitted Q-Iteration of Riedmiller [2], and regularized Fitted Q-Iteration of
Farahmand et al. [3]. See the work of Munos and Szepesvári [4] for more information about AVI.

∗Csaba Szepesvári is on leave from MTA SZTAKI. We would like to acknowledge the insightful comments
by the anonymous reviewers and Mohammad Gheshlaghi Azar and Bruno Scherrer. This work was partly
supported by AICML, AITF, NSERC, and PASCAL2 under no216886.
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API is another iterative algorithm to find an approximate solution to the fixed point of the Bellman
optimality operator. It starts from a policy π0, and then approximately evaluates that policy π0, i.e.,
it finds a Q0 that satisfies Tπ0Q0 ≈ Q0. Afterwards, it performs a policy improvement step, which
is to calculate the greedy policy with respect to (w.r.t.) the most recent action-value function, to get
a new policy π1, i.e., π1(·) = arg maxa∈AQ0(·, a). The policy iteration algorithm continues by
approximately evaluating the newly obtained policy π1 to get Q1 and repeating the whole process
again, generating a sequence of policies and their corresponding approximate action-value functions
Q0 → π1 → Q1 → π2 → · · · . Same as AVI, we may encounter a difference between the ap-
proximate solution Qk (TπkQk ≈ Qk) and the true value of the policy Qπk , which is the solution
of the fixed-point equation TπkQπk = Qπk . Two convenient ways to describe this error is either
by the Bellman residual of Qk (εk = Qk − TπkQk) or the policy evaluation approximation error
(εk = Qk −Qπk ).

API is a popular approach in RL literature. One well-known algorithm is LSPI of Lagoudakis and
Parr [5] that combines Least-Squares Temporal Difference (LSTD) algorithm (Bradtke and Barto
[6]) with a policy improvement step. Another API method is to use the Bellman Residual Mini-
mization (BRM) and its variants for policy evaluation and iteratively apply the policy improvement
step (Antos et al. [7], Maillard et al. [8]). Both LSPI and BRM have many extensions: Farah-
mand et al. [9] introduced a nonparametric extension of LSPI and BRM and formulated them as
an optimization problem in a reproducing kernel Hilbert space and analyzed its statistical behavior.
Kolter and Ng [10] formulated an l1 regularization extension of LSTD. See Xu et al. [11] and Jung
and Polani [12] for other examples of kernel-based extension of LSTD/LSPI, and Taylor and Parr
[13] for a unified framework. Also see the proto-value function-based approach of Mahadevan and
Maggioni [14] and iLSTD of Geramifard et al. [15].

A crucial question in the applicability of API/AVI, which is the main topic of this work, is to un-
derstand how either the approximation error or the Bellman residual at each iteration of API or AVI
affects the quality of the resulted policy. Suppose we run API/AVI forK iterations to obtain a policy
πK . Does the knowledge that all εks are small (maybe because we have had a lot of samples and
used powerful function approximators) imply that V πK is close to the optimal value function V ∗
too? If so, how does the errors occurred at a certain iteration k propagate through iterations of
API/AVI and affect the final performance loss?

There have already been some results that partially address this question. As an example, Propo-
sition 6.2 of Bertsekas and Tsitsiklis [16] shows that for API applied to a finite MDP, we have
lim supk→∞ ‖V ∗ − V πk‖∞ ≤

2γ
(1−γ)2 lim supk→∞ ‖V πk − Vk‖∞ where γ is the discount facto.

Similarly for AVI, if the approximation errors are uniformly bounded (‖T ∗Vk − Vk+1‖∞ ≤ ε), we
have lim supk→∞ ‖V ∗ − V πk‖∞ ≤

2γ
(1−γ)2 ε (Munos [17]).

Nevertheless, most of these results are pessimistic in several ways. One reason is that they are
expressed as the supremum norm of the approximation errors ‖V πk − Vk‖∞ or the Bellman error
‖Qk − TπkQk‖∞. Compared to Lp norms, the supremum norm is conservative. It is quite possible
that the result of a learning algorithm has a small Lp norm but a very large L∞ norm. Therefore, it
is desirable to have a result expressed in Lp norm of the approximation/Bellman residual εk.

In the past couple of years, there have been attempts to extend L∞ norm results to Lp ones [18, 17,
7]. As a typical example, we quote the following from Antos et al. [7]:
Proposition 1 (Error Propagation for API – [7]). Let p ≥ 1 be a real and K be a positive integer.
Then, for any sequence of functions {Q(k)} ⊂ B(X × A;Qmax)(0 ≤ k < K), the space of Qmax-
bounded measurable functions, and their corresponding Bellman residuals εk = Qk − TπQk, the
following inequalities hold:

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

(
C1/p
ρ,ν max

0≤k<K
‖εk‖p,ν + γ

K
p −1Rmax

)
,

where Rmax is an upper bound on the magnitude of the expected reward function and

Cρ,ν = (1− γ)2
∑
m≥1

mγm−1 sup
π1,...,πm

∥∥∥∥d (ρPπ1 · · ·Pπm)

dν

∥∥∥∥
∞
.

This result indeed uses Lp norm of the Bellman residuals and is an improvement over results
like Bertsekas and Tsitsiklis [16, Proposition 6.2], but still is pessimistic in some ways and does
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not answer several important questions. For instance, this result implies that the uniform-over-all-
iterations upper bound max0≤k<K ‖εk‖p,ν is the quantity that determines the performance loss. One
may wonder if this condition is really necessary, and ask whether it is better to put more emphasis
on earlier/later iterations? Or another question is whether the appearance of terms in the form of
‖d(ρP

π1 ···Pπm )
dν ‖∞ is intrinsic to the difficulty of the problem or can be relaxed.

The goal of this work is to answer these questions and to provide tighter upper bounds on the
performance loss of API/AVI algorithms. These bounds help one understand what factors contribute
to the difficulty of a learning problem. We base our analysis on the work of Munos [17], Antos et al.
[7], Munos [18] and provide upper bounds on the performance loss in the form of ‖V ∗ − V πk‖1,ρ
(the expected loss weighted according to the evaluation probability distribution ρ – this is defined
in Section 2) for API (Section 3) and AVI (Section 4). This performance loss depends on a certain
function of ν-weighted L2 norms of εks, in which ν is the data sampling distribution, and Cρ,ν(K)
that depends on the MDP, two probability distributions ρ and ν, and the number of iterations K.

In addition to relating the performance loss to Lp norm of the Bellman residual/approximation er-
ror, this work has three main contributions that to our knowledge have not been considered before:
(1) We show that the performance loss depends on the expectation of the squared Radon-Nikodym
derivative of a certain distribution, to be specified in Section 3, rather than its supremum. The dif-
ference between this expectation and the supremum can be considerable. For instance, for a finite
state space with N states, the ratio can be of order O(N1/2). (2) The contribution of the Bell-
man/approximation error to the performance loss is more prominent in later iterations of API/AVI.
and the effect of an error term in early iterations decays exponentially fast. (3) There are certain
structures in the definition of concentrability coefficients that have not been explored before. We
thoroughly discuss these qualitative/structural improvements in Section 5.

2 Background

In this section, we provide a very brief summary of some of the concepts and definitions from
the theory of Markov Decision Processes (MDP) and reinforcement learning (RL) and a few other
notations. For further information about MDPs and RL the reader is referred to [19, 16, 20, 21].

A finite-action discounted MDP is a 5-tuple (X ,A, P,R, γ), whereX is a measurable state space,A
is a finite set of actions, P is the probability transition kernel,R is the reward kernel, and 0 ≤ γ < 1
is the discount factor. The transition kernel P is a mapping with domain X × A evaluated at
(x, a) ∈ X × A that gives a distribution over X , which we shall denote by P (·|x, a). Likewise,
R is a mapping with domain X × A that gives a distribution of immediate reward over R, which
is denoted by R(·|x, a). We denote r(x, a) = E [R(·|x, a)], and assume that its absolute value is
bounded by Rmax.

A mapping π : X → A is called a deterministic Markov stationary policy, or just a policy in
short. Following a policy π in an MDP means that at each time step At = π(Xt). Upon taking
action At at Xt, we receive reward Rt ∼ R(·|x, a), and the Markov chain evolves according to
Xt+1 ∼ P (·|Xt, At). We denote the probability transition kernel of following a policy π by Pπ ,
i.e., Pπ(dy|x) = P (dy|x, π(x)).

The value function V π for a policy π is defined as V π(x) , E
[∑∞

t=0 γ
tRt

∣∣∣X0 = x
]

and the

action-value function is defined as Qπ(x, a) , E
[∑∞

t=0 γ
tRt

∣∣∣X0 = x,A0 = a
]
. For a discounted

MDP, we define the optimal value and action-value functions by V ∗(x) = supπ V
π(x) (∀x ∈ X )

and Q∗(x, a) = supπ Q
π(x, a) (∀x ∈ X ,∀a ∈ A). We say that a policy π∗ is optimal

if it achieves the best values in every state, i.e., if V π
∗

= V ∗. We say that a policy π is
greedy w.r.t. an action-value function Q and write π = π̂(·;Q), if π(x) ∈ arg maxa∈AQ(x, a)
holds for all x ∈ X . Similarly, the policy π is greedy w.r.t. V , if for all x ∈ X , π(x) ∈
argmaxa∈A

∫
P (dx′|x, a)[r(x, a) + γV (x′)] (If there exist multiple maximizers, some maximizer

is chosen in an arbitrary deterministic manner). Greedy policies are important because a greedy pol-
icy w.r.t. Q∗ (or V ∗) is an optimal policy. Hence, knowing Q∗ is sufficient for behaving optimally
(cf. Proposition 4.3 of [19]).
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We define the Bellman operator for a policy π as (TπV )(x) , r(x, π(x)) + γ
∫
V π(x′)P (dx′|x, a)

and (TπQ)(x, a) , r(x, a) + γ
∫
Q(x′, π(x′))P (dx′|x, a). Similarly, the Bellman optimality op-

erator is defined as (T ∗V )(x) , maxa

{
r(x, a) + γ

∫
V (x′)P (dx′|x, a)

}
and (T ∗Q)(x, a) ,

r(x, a) + γ
∫

maxa′ Q(x′, a′)P (dx′|x, a).

For a measurable space X , with a σ-algebra σX , we define M(X ) as the set of all probability
measures over σX . For a probability measure ρ ∈ M(X ) and the transition kernel Pπ , we define
ρPπ(dx′) =

∫
P (dx′|x, π(x))dρ(x). In words, ρ(Pπ)m ∈ M(X ) is an m-step-ahead probability

distribution of states if the starting state distribution is ρ and we follow Pπ for m steps. In what
follows we shall use ‖V ‖p,ν to denote the Lp(ν)-norm of a measurable function V : X → R:
‖V ‖pp,ν , ν|V |p ,

∫
X |V (x)|pdν(x). For a function Q : X × A 7→ R, we define ‖Q‖pp,ν ,

1
|A|
∑
a∈A

∫
X |Q(x, a)|pdν(x).

3 Approximate Policy Iteration

Consider the API procedure and the sequence Q0 → π1 → Q1 → π2 → · · · → QK−1 → πK ,
where πk is the greedy policy w.r.t. Qk−1 andQk is the approximate action-value function for policy
πk. For the sequence {Qk}K−1k=0 , denote the Bellman Residual (BR) and policy Approximation Error
(AE) at each iteration by

εBR
k = Qk − TπkQk, (1)

εAE
k = Qk −Qπk . (2)

The goal of this section is to study the effect of ν-weighted L2p norm of the Bellman residual
sequence {εBR

k }
K−1
k=0 or the policy evaluation approximation error sequence {εAE

k }
K−1
k=0 on the per-

formance loss ‖Q∗ −QπK‖p,ρ of the outcome policy πK .

The choice of ρ and ν is arbitrary, however, a natural choice for ν is the sampling distribution of the
data, which is used by the policy evaluation module. On the other hand, the probability distribution
ρ reflects the importance of various regions of the state space and is selected by the practitioner. One
common choice, though not necessarily the best, is the stationary distribution of the optimal policy.

Because of the dynamical nature of MDP, the performance loss ‖Q∗ −QπK‖p,ρ depends on the
difference between the sampling distribution ν and the future-state distribution in the form of
ρPπ1Pπ2 · · · . The precise form of this dependence will be formalized in Theorems 2 and 3. Before
stating the results, we require to define the following concentrability coefficients.

Definition 1 (Expected Concentrability of the Future-State Distribution). Given ρ, ν ∈ M(X ),
ν � λ1 (λ is the Lebesgue measure), m ≥ 0, and an arbitrary sequence of stationary policies
{πm}m≥1, let ρPπ1Pπ2 . . . Pπm ∈ M(X ) denote the future-state distribution obtained when the
first state is distributed according to ρ and then we follow the sequence of policies {πk}mk=1.

For integers m1,m2 ≥ 1 and policies π, π1, π2, define the following concentrability coefficients,
which are used in API analysis:

cPI1,ρ,ν(m1,m2;π) ,

EX∼ν

∣∣∣∣∣d
(
ρ(Pπ

∗
)m1(Pπ)m2

)
dν

(X)

∣∣∣∣∣
2
 1

2

,

cPI2,ρ,ν(m1,m2;π1, π2) ,

EX∼ν

∣∣∣∣∣d
(
ρ(Pπ

∗
)m1(Pπ1)m2Pπ2

)
dν

(X)

∣∣∣∣∣
2
 1

2

,

cPI3,ρ,ν ,

EX∼ν

∣∣∣∣∣d
(
ρPπ

∗)
dν

(X)

∣∣∣∣∣
2
 1

2

,

1For two measures ν1 and ν2 on the same measurable space, we say that ν1 is absolutely continuous with
respect to ν2 (or ν2 dominates ν1) and denote ν1 � ν2 iff ν2(A) = 0⇒ ν1(A) = 0.
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with the understanding that if the future-state distribution ρ(Pπ
∗
)m1(Pπ)m2 (or

ρ(Pπ
∗
)m1(Pπ1)m2Pπ2 or ρPπ

∗
) is not absolutely continuous w.r.t. ν, then we take

cPI1,ρ,ν(m1,m2;π) =∞ (similar for others).

Also for integers m1,m2 ≥ 1, policy π and the sequence of policies π1, . . . , πk, define the following
concentrability coefficients, which are used in AVI analysis:

cVI1,ρ,ν(m1,m2;π) ,

EX∼ν

∣∣∣∣∣d
(
ρ(Pπ)m1(Pπ

∗
)m2
)

dν
(X)

∣∣∣∣∣
2
 1

2

,

cVI2,ρ,ν(m1;π1, . . . , πk) ,

(
EX∼ν

[∣∣∣∣d (ρ(Pπk)m1Pπk−1Pπk−2 · · ·Pπ1)

dν
(X)

∣∣∣∣2
]) 1

2

,

with the understanding that if the future-state distribution ρ(Pπ
∗
)m1(Pπ)m2 (or

ρ(Pπk)m1Pπk−1Pπk−2 · · ·Pπ1 ) is not absolutely continuous w.r.t. ν, then we take
cVI1,ρ,ν(m1,m2;π) =∞ (similarly, cVI2,ρ,ν(m;π1, . . . , πk) =∞).

In order to compactly present our results, we define the following notation:

αk =

{
(1−γ)γK−k−1

1−γK+1 0 ≤ k < K,
(1−γ)γK
1−γK+1 k = K.

(3)

Theorem 2 (Error Propagation for API). Let p ≥ 1 be a real number, K be a positive integer,
and Qmax ≤ Rmax

1−γ . Then for any sequence {Qk}K−1k=0 ⊂ B(X × A, Qmax) (space of Qmax-bounded
measurable functions defined on X × A) and the corresponding sequence {εk}K−1k=0 defined in (1)
or (2) , we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2p

PI(BR/AE),ρ,ν(K; r)E
1
2p (ε0, . . . , εK−1; r) + γ

K
p −1Rmax

]
.

where E(ε0, . . . , εK−1; r) =
∑K−1
k=0 α2r

k ‖εk‖
2p
2p,ν .

(a) If εk = εBR for all 0 ≤ k < K, we have

CPI(BR),ρ,ν(K; r) = (
1− γ

2
)2 sup
π′0,...,π

′
K

K−1∑
k=0

α
2(1−r)
k

(∑
m≥0

γm
(
cPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

cPI1,ρ,ν(K − k,m;π′k)
))2

.

(b) If εk = εAE for all 0 ≤ k < K, we have

CPI(AE),ρ,ν(K; r) = (
1− γ

2
)2 sup
π′0,...,π

′
K

K−1∑
k=0

α
2(1−r)
k

(∑
m≥0

γmcPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

∑
m≥1

γmcPI2,ρ,ν(K − k − 1,m;π′k+1, π
′
k) + cPI3,ρ,ν

)2

.

Proof. Part (a): LetEk = Pπk+1(I−γPπk+1)−1−Pπ∗(I−γPπk)−1. It can be shown that (Munos
[18, Lemma 4])

Q∗ −Qπk+1 ≤ γPπ
∗
(Q∗ −Qπk) + γEkε

BR
k .
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By induction, we get

Q∗ −QπK ≤ γ
K−1∑
k=0

(γPπ
∗
)K−k−1Ekε

BR
k + (γPπ

∗
)K(Q∗ −Qπ0). (4)

Define Fk = Pπk+1(I− γPπk+1)−1 +Pπ
∗
(I− γPπk)−1, and take point-wise absolute value of (4)

to get

|Q∗ −QπK | ≤ γ
K−1∑
k=0

(γPπ
∗
)K−k−1Fk|εBR

k |+ (γPπ
∗
)K |Q∗ −Qπ0 |.

Now we use αk defined in (3) and introduce Aks to simplify our further treatment:

Ak =

{ 1−γ
2 (Pπ

∗
)K−k−1Fk 0 ≤ k < K,

(Pπ
∗
)K k = K.

Note that
∑K
k=0 αk = 1, so Jensen’s inequality holds, i.e., φ(

∑K
k=0 akfk) ≤

∑K
k=0 akφ(fk) for

convex φ(·). Also it is shown in Lemma 12 of [7] that (1) Ak : B(X × A) → B(X × A) are
positive linear operators that satisfy Ak1 = 1, and (2) if φ(·) is convex, then φ(AkQ) ≤ Ak(φ(Q))
where φ is applied point-wise.

Using these notations and noting that Q∗ − Qπ0 ≤ 2
1−γRmax1 (where 1 is the constant function

defined on domain X with the value of 1), we get

|Q∗ −QπK | ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εBR
k |+ γ−1αKAkRmax1

]
. (5)

Denote λK = [ 2γ(1−γ
K+1)

(1−γ)2 ]p. Take the pth power of both sides of (5) and apply Jensen’s inequality
twice (once considering Aks and once considering αks) to get

‖Q∗ −QπK‖pp,ρ =
1

|A|
∑
a∈A

∫
X
|Q∗(x, a)−QπK (x, a)|pρ(dx) ≤ λKρ

[
K−1∑
k=0

αkAk|εBR
k |p + γ−pαKAkR

p
max1

]
.

Consider a term like ρAk|εBR
k |p = 1−γ

2 ρ(Pπ
∗
)K−k−1

[
Pπk+1(I− γPπk+1)−1 + Pπ

∗
(I− γPπk)−1

]
|εBR
k |p

for 0 ≤ k < K. Expand (I− γPπk+1)−1 and (I− γPπk)−1 to have

ρAk|εBR
k |p =

1− γ
2

ρ

∑
m≥0

γm(Pπ
∗
)K−k−1(Pπk+1)m+1 +

∑
m≥0

γm(Pπ
∗
)K−k(Pπk)m

 |εBR
k |p.

For any Borel measurable function f : X → R, and the probability measures µ1 and µ2 that satisfy
µ1 � µ2, we have the following Cauchy-Schwarz inequality:∫

X
fdµ1 ≤

(∫
X

∣∣∣∣dµ1

dµ2

∣∣∣∣2 dµ2

) 1
2 (∫

X
f2dµ2

) 1
2

.

Let us focus on a single term like ρ(Pπ
∗
)K−k−1(Pπk+1)m+1|εBR

k |p, and apply the Cauchy-Schwarz
inequality to it. We have

ρ(Pπ
∗
)K−k−1(Pπk+1)m+1|εBR

k |p ≤

∫
X

∣∣∣∣∣d
(
ρ(Pπ

∗
)K−k−1(Pπk+1)m+1

)
dν

∣∣∣∣∣
2

dν

 1
2 (∫

X
|εBR
k |2pdν

) 1
2

= cPI1,ρ,ν(K − k − 1,m+ 1;πk+1)
∥∥εBR
k

∥∥p
2p,ν

.
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Doing the same for the other terms (Pπ
∗
)K−k(Pπk)m, and noting that ρAK1 = ρ1 = 1 implies

that

‖Q∗ −QπK‖pp,ρ ≤

λK

[
1− γ

2

K−1∑
k=0

αk
∑
m≥0

γm (cPI1,ρ,ν(K − k − 1,m+ 1;πk+1) + cPI1,ρ,ν(K − k,m;πk))
∥∥εBR
k

∥∥p
2p,ν

+ γ−pαKR
p
max

]
.

In order to separate concentrability coefficients and {εBR
k }

K−1
k=0 , we use

Hölder inequality
∑K−1
k=0 akbk ≤ (

∑K−1
k=0 |ak|s)

1
s (
∑K−1
k=0 |bk|s

′
)

1
s′ with

s ∈ (1,∞) and 1
s + 1

s′ = 1. Let ak = αrk
∥∥εBR
k

∥∥p
2p,ν

and bk =

α1−r
k

∑
m≥0 γ

m (cPI1,ρ,ν(K − k − 1,m+ 1;πk+1) + cPI1,ρ,ν(K − k,m;πk)) for some r ∈ [0, 1].
Therefore for all (s, r) ∈ (1,∞)× [0, 1], we have

‖Q∗ −QπK‖pp,ρ ≤ λK
1− γ
2

K−1∑
k=0

α
s(1−r)
k

∑
m≥0

γm (cPI1,ρ,ν(K − k − 1,m+ 1;πk+1) + cPI1,ρ,ν(K − k,m;πk))

s 1
s

×

[
K−1∑
k=0

αs
′r
k

∥∥∥εBR
k

∥∥∥ps′
2p,ν

] 1
s′

+ λKγ
−pαKR

p
max. (6)

Because {πk}Kk=0 are not known, we take the supremum over all policies. Moreover as (6) holds for
all (s, r) ∈ (1,∞) × [0, 1], we may take the infimum over (s, r) in the right hand side. Also note
that 1−γ

1−γK+1 < 1 and λK ≤ [ 2γ
(1−γ)2 ]p. After taking the pth root, we have

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

(s,r)∈(1,∞)×[0,1]
C

1
ps

PI,ρ,ν(K; r, s)E
1
ps′ (εBR

0 , . . . , εBR
K−1; r, s) + γ

K
p −1Rmax

]
,

where

CPI(BR),ρ,ν(K; r, s) =

(
1− γ

2

)s
sup

π′0,...,π
′
K

K−1∑
k=0

α
s(1−r)
k

(∑
m≥0

γm
(
cPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

cPI1,ρ,ν(K − k,m;π′k)
))s

,

and E(εBR
0 , . . . , εBR

K−1; r, s) =
∑K−1
k=0 αs

′r
k

∥∥εBR
k

∥∥ps′
2p,ν

.

This result is general and holds for all s ∈ (0, 1). In order to make it more accessible, but at the cost
of loosening of the upper bound, we set s = s′ = 2. This finishes the proof of Part (a).

Part (b): The proof of this part is similar to the proof of Part (a). We briefly sketch the key steps:
Define Ek = Pπk+1(I− γPπk+1)−1(I− γPπk)−Pπ∗ . From Munos [18, Lemma 4] one can show
that

Q∗ −QπK ≤ γ
K−1∑
k=0

(γPπ
∗
)K−k−1Ekε

AE
k + (γPπ

∗
)K(Q∗ −Qπ0). (7)

Define Fk = Pπk+1(I − γPπk+1)−1(I − γPπk) + Pπ
∗

and take point-wise absolute value of (7)
and use the same definition of Aks as Part (a) (with the new Fks) to get
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|Q∗ −QπK | ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εAE
k |+ γ−1αKAkRmax1

]
.

Consider a term such as ρAk|εBR
k |p for 0 ≤ k < K and expand (I− γPπk+1)−1.

ρAk|εAE
k |p =

1− γ
2

ρ

∑
m≥0

γm(Pπ
∗
)K−k−1(Pπk+1)m+1(I− γPπk) + Pπ

∗

 |εAE
k |p.

After performing the same change of measure and applying the Cauchy-Schwarz inequality, we have

‖Q∗ −QπK‖pp,ρ ≤

λK

[
1− γ

2

K−1∑
k=0

αk

( ∑
m≥0

γmcPI1,ρ,ν(K − k − 1,m+ 1;πk+1)+

∑
m≥1

γmcPI2,ρ,ν(K − k − 1,m;πk+1, πk) + cPI3,ρ,ν

)∥∥εAE
k

∥∥p
2p,ν

+ γ−pαKR
p
max

]
.

The application of Hölder inequality with a similarly defined decomposition and then taking supre-
mum over policies lead to

‖Q∗ −QπK‖p,ρ ≤
2γ

(1− γ)2

[
inf

(s,r)∈(1,∞)×[0,1]
C

1
ps

PI,ρ,ν(K; r, s)E
1
ps′ (εAE

0 , . . . , εAE
K−1; r, s) + γ

K
p −1Rmax

]
,

where

CPI(AE),ρ,ν(K; r, s) = (
1− γ

2
)s sup
π′0,...,π

′
K

K−1∑
k=0

α
s(1−r)
k

(∑
m≥0

γmcPI1,ρ,ν(K − k − 1,m+ 1;π′k+1)+

∑
m≥1

γmcPI2,ρ,ν(K − k − 1,m;π′k+1, π
′
k) + cPI3,ρ,ν

)s

and E(εAE
0 , . . . , εAE

K−1; r, s) =
∑K−1
k=0 αs

′r
k

∥∥εAE
k

∥∥ps′
2p,ν

. Set s = s′ = 2 to get the desired result.

4 Approximate Value Iteration

Consider the AVI procedure and the sequence V0 → V1 → · · · → VK , in which Vk+1 is the
result of approximately applying the Bellman optimality operator on the previous estimate Vk, i.e.,
Vk+1 ≈ T ∗Vk. Denote the approximation error caused at each iteration by

εk = T ∗Vk − Vk+1. (8)

The goal of this section is to analyze AVI procedure and to relate the approximation error sequence
{εk}K−1k=0 to the performance loss ‖V ∗ − V πK‖p,ρ of the obtained policy πK , which is the greedy
policy w.r.t. VK .
Theorem 3 (Error Propagation for AVI). Let p ≥ 1 be a real number, K be a positive integer, and
Vmax ≤ Rmax

1−γ . Then for any sequence {Vk}Kk=0 ⊂ B(X , Vmax), and the corresponding sequence
{εk}K−1k=0 defined in (8), we have

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2

[
inf

r∈[0,1]
C

1
2p

VI,ρ,ν(K; r)E
1
2p (ε0, . . . , εK−1; r) +

2

1− γ
γ
K
p Rmax

]
,

8



where

CVI,ρ,ν(K; r) =

(
1− γ

2

)2

sup
π′1,...,π

′
K

K−1∑
k=0

α
2(1−r)
k

[ ∑
m≥0

γm
(
cVI1,ρ,ν(m,K − k;π′K) +

cVI2,ρ,ν(m+ 1;π′k+1, . . . , π
′
K)
)]2

,

and E(ε0, . . . , εK−1; r) =
∑K−1
k=0 α2r

k ‖εk‖
2p
2p,ν .

Proof. First we derive a point-wise bound relating V ∗ − V πK to {εk}K−1k=0 similar to Lemma 4.1 of
Munos [17].

V ∗ − Vk+1 = Tπ
∗
V ∗ − Tπ

∗
Vk + Tπ

∗
Vk − T ∗Vk + εk ≤ γPπ

∗
(V ∗ − Vk) + εk,

V ∗ − Vk+1 = T ∗V ∗ − TπkV ∗ + TπkV ∗ − T ∗Vk + εk ≥ γPπk(V ∗ − Vk) + εk,

where we used the property of the Bellman optimality operator T ∗Vk ≥ Tπ
∗
Vk, the definition of

greedy policy πk that entails TπkQk = T ∗Qk, and the definition of εk (8). By induction we get

V ∗ − VK ≤
K−1∑
k=0

γK−k−1(Pπ
∗
)K−k−1εk + γK(Pπ

∗
)K(V ∗ − V0),

V ∗ − VK ≥
K−1∑
k=0

γK−k−1(PπK−1PπK−2 · · ·Pπk+1)εk + γK(PπK · · ·Pπ1)(V ∗ − V0). (9)

Benefiting from T ∗VK ≥ Tπ
∗
VK and noting that T ∗VK = TπKV πK by the definition of the greedy

policy,

V ∗ − V πK = Tπ
∗
V ∗ − Tπ

∗
VK + Tπ

∗
VK − T ∗VK + T ∗VK − TπKV πK

≤ Tπ
∗
V ∗ − Tπ

∗
VK + T ∗VK − TπKV πK

= γPπ
∗
(V ∗ − VK) + γPπK (VK − V πK )

= γPπ
∗
(V ∗ − VK) + γPπK (VK − V ∗ + V ∗ + V πK ).

Re-arranging and using Lemma 4.2 of [17], we deduce that

V ∗ − V πK ≤ γ(I− γPπK )−1(Pπ
∗
− PπK )(V ∗ − VK) (10)

Plugging (9) into (10) and taking the absolute value of both sides, we get the following point-wise
inequality

V ∗ − V πK ≤ γ(I− γPπK )−1

[
K−1∑
k=0

γK−k−1
(

(Pπ
∗
)K−k + (PπKPπK−1 · · ·Pπk+1)

)
|εk|

+ γK
(

(Pπ
∗
)K+1 + (PπKPπKPπK−1 · · ·Pπ1)

)
|V ∗ − V0|

]
.

(11)

As in the proof of Theorem 2, we use αks as defined in (3) and introduce

Ak =

{ 1−γ
2 (I− γPπK )−1

[
(Pπ

∗
)K−k + (PπKPπK−1 · · ·Pπk+1)

]
0 ≤ k < K,

1−γ
2 (I− γPπK )−1

(
(Pπ

∗
)K+1 + (PπKPπKPπK−1 · · ·Pπ1)

)
k = K.

Note that we use the same αks as in the proof of Theorem 2, butAks are different. Nevertheless, they
satisfy the same properties that allow us to apply Jensen inequality. We have |V ∗−V0| ≤ 2

1−γRmax1
to get

V ∗ − V πK ≤ 2γ(1− γK+1)

(1− γ)2

[
K−1∑
k=0

αkAk|εk|+ αKAK
2

1− γ
Rmax1

]
.
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Now take the pth power of both sides of (11), and apply Jensen inequality twice (once considering
Aks and once considering αks),

‖V ∗ − V πK‖pp,ρ = λKρ

[
K−1∑
k=0

αkAk|εk|p + αK

(
2

1− γ

)p
AkR

p
max1

]
.

Consider a term like ρAk|εk|p for 0 ≤ k < K:

ρAk|εk|p =
1− γ

2
ρ(I− γPπK )−1

[
(Pπ

∗
)K−k + (PπKPπK−1 · · ·Pπk+1)

]
|εk|p

=
1− γ

2
ρ

∑
m≥0

γm
(

(PπK )m(Pπ
∗
)K−k + (PπK )m+1PπK−1 · · ·Pπk+1)

) |εk|p.
Applying Cauchy-Schwarz inequality, as we did in Theorem 2, we deduce
‖V ∗ − V πK‖pp,ρ ≤

λK

[
1− γ

2

K−1∑
k=0

αk
∑
m≥0

γm (cVI1,ρ,ν(m,K − k;πK) + cVI2,ρ,ν(m+ 1;πk+1, . . . , πK)) ‖εk‖p2p,ν

+ αK

(
2

1− γ

)p
Rpmax

]
.

Use Hölder inequality with ak = αrk ‖εk‖
p
2p,ν and bk =

α1−r
k

∑
m≥0 γ

m (cVI1,ρ,ν(m,K − k;πK) + cVI2,ρ,ν(m+ 1;πk+1, . . . , πK)) (all variables are
defined the same as in the proof of Theorem 2). Therefore for all (s, r) ∈ (1,∞)× [0, 1], we have

‖V ∗ − V πK‖p,ρ ≤
2γ

(1− γ)2

[
inf

(s,r)∈(1,∞)×[0,1]
C

1
ps

VI,ρ,ν(K; r, s)E
1
ps′ (ε0, . . . , εK−1; r, s) +

2

1− γ
γ
K
p Rmax

]
,

where
CVI,ρ,ν(K; r, s) =(

1− γ
2

)s
sup

π′1,...,π
′
K

K−1∑
k=0

α
s(1−r)
k

∑
m≥0

γm
(
cVI1,ρ,ν(m,K − k;π′K) + cVI2,ρ,ν(m+ 1;π′k+1, . . . , π

′
K)
)s

,

and E(ε0, . . . , εK−1; r, s) =
∑K−1
k=0 αs

′r
k ‖εk‖

ps′

2p,ν . To simplify the bound, at the cost of loosening
the upper bound, we set s = s′ = 2.

5 Discussion

In this section, we discuss significant improvements of Theorems 2 and 3 over previous results such
as [16, 18, 17, 7].

5.1 Lp norm instead of L∞ norm

As opposed to most error upper bounds, Theorems 2 and 3 relate ‖V ∗ − V πK‖p,ρ to the Lp norm
of the approximation or Bellman errors ‖εk‖2p,ν of iterations in API/AVI. This should be con-
trasted with the traditional, and more conservative, results such as lim supk→∞ ‖V ∗ − V πk‖∞ ≤

2γ
(1−γ)2 lim supk→∞ ‖V πk − Vk‖∞ for API (Proposition 6.2 of Bertsekas and Tsitsiklis [16]). The
use of Lp norm not only is a huge improvement over conservative supremum norm, but also allows
us to benefit from the vast literature on supervised learning techniques, which usually provides error
upper bounds in the form of Lp norms, in the context of RL/Planning problems. This is especially
interesting for the case of p = 1 as the performance loss ‖V ∗ − V πK‖1,ρ is the difference between
the expected return of the optimal policy and the resulted policy πK when the initial state distribu-
tion is ρ. Convenient enough, the errors appearing in the upper bound are in the form of ‖εk‖2,ν
which is very common in the supervised learning literature. This type of improvement, however,
has been done in the past couple of years [18, 17, 7] - see Proposition 1 in Section 1.
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Figure 1: (a) Comparison of EX∼ν
[
|d(ρ(P

π)m)
dν |2

] 1
2

and
∥∥∥d(ρ(Pπ)m)

dν

∥∥∥
∞

(b) Comparison of

‖Q∗ −Qk‖1 for uniform and exponential data sampling schedule. The total number of samples
is the same. [The Y -scale of both plots is logarithmic.]

5.2 Expected versus supremum concentrability of the future-state distribution

The concentrability coefficients (Definition 1) reflect the effect of future-state distribution on the per-
formance loss ‖V ∗ − V πK‖p,ρ. Previously it was thought that the key contributing factor to the per-
formance loss is the supremum of the Radon-Nikodym derivative of these two distributions. This is
evident in the definition of Cρ,ν in Proposition 1 where we have terms in the form of ‖d(ρ(P

π)m)
dν ‖∞

instead of
(
EX∼ν

[
|d(ρ(P

π)m)
dν (X)|2

]) 1
2

that we have in Definition 1.

Nevertheless, it turns out that the key contributing factor that determines the performance loss is
the expectation of the squared Radon-Nikodym derivative instead of its supremum. Intuitively this
implies that even if for some subset of X ′ ⊂ X the ratio d(ρ(Pπ)m)

dν is large but the probability ν(X ′)
is very small, performance loss due to it is still small. This phenomenon has not been suggested by
previous results.

As an illustration of this difference, consider a Chain Walk with 1000 states with a single policy that
drifts toward state 1 of the chain. We start with ρ(x) = 1

201 for x ∈ [400, 600] and zero everywhere

else. Then we evaluate both ‖d(ρ(P
π)m)

dν ‖∞ and (EX∼ν
[
|d(ρ(P

π)m)
dν |2

]
)

1
2 for m = 1, 2, . . . when ν

is the uniform distribution. The result is shown in Figure 1a. One sees that the ratio is constant in the
beginning, but increases when the distribution ρ(Pπ)m concentrates around state 1, until it reaches
steady-state. The growth and the final value of the expectation-based concentrability coefficient is
much smaller than that of supremum-based.

It is easy to show that if the Chain Walk has N states and the policy has the same concentrating
behavior and ν is uniform, then ‖d(ρ(P

π)m)
dν ‖∞ → N , while (EX∼ν

[
|d(ρ(P

π)m)
dν |2

]
)

1
2 →

√
N when

m → ∞. The ratio, therefore, would be of order Θ(
√
N). This clearly shows the improvement of

this new analysis in a simple problem. One may anticipate that this sharper behavior happens in
many other problems too.

More generally, consider C∞ = ‖dµdν ‖∞ and CL2 = (EX∼ν
[
|dµdν |

2
]
)

1
2 . For a finite state space

with N states and ν is the uniform distribution, C∞ ≤ N but CL2 ≤
√
N . Neglecting all

other differences between our results and the previous ones, we get a performance upper bound
in the form of ‖Q∗ −QπK‖1,ρ ≤ c1(γ)O(N1/4) supk ‖εk‖2,ν , while Proposition 1 implies that
‖Q∗ −QπK‖1,ρ ≤ c2(γ)O(N1/2) supk ||εk||2,ν . This difference between O(N1/4) and O(N1/2)
shows a significant improvement.
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5.3 Error decaying property

Theorems 2 and 3 show that the dependence of performance loss ‖V ∗ − V πK‖p,ρ (or

‖Q∗ −QπK‖p,ρ) on {εk}K−1k=0 is in the form of E(ε0, . . . , εK−1; r) =
∑K−1
k=0 α2r

k ‖εk‖
2p
2p,ν . This has

a very special structure in that the approximation errors at later iterations have more contribution to
the final performance loss. This behavior is obscure in previous results such as [17, 7] that the depen-
dence of the final performance loss is expressed as E(ε0, . . . , εK−1; r) = maxk=0,...,K−1 ‖εk‖p,ν
(see Proposition 1).

This property has practical and algorithmic implications too. It says that it is better to put more
effort on having a lower Bellman or approximation error at later iterations of API/AVI. This, for
instance, can be done by gradually increasing the number of samples throughout iterations, or to use
more powerful, and possibly computationally more expensive, function approximators for the later
iterations of API/AVI.

To illustrate this property, we compare two different sampling schedules on a simple MDP. The
MDP is a 100-state, 2-action chain similar to Chain Walk problem in the work of Lagoudakis and
Parr [5]. We use AVI with a lookup-table function representation. In the first sampling schedule,
every 20 iterations we generate a fixed number of fresh samples by following a uniformly random
walk on the chain (this means that we throw away old samples). This is the fixed strategy. In the
exponential strategy, we again generate new samples every 20 iterations but the number of samples
at the kth iteration is ckγ . The constant c is tuned such that the total number of both sampling
strategy is almost the same (we give a slight margin of about 0.1% of samples in favor of the fixed
strategy). What we compare is ‖Q∗ −Qk‖1,ν when ν is the uniform distribution. The result can be
seen in Figure 1b. The improvement of the exponential sampling schedule is evident. Of course, one
may think of more sophisticated sampling schedules but this simple illustration should be sufficient
to attract the attention of practitioners to this phenomenon.

5.4 Restricted search over policy space

One interesting feature of our results is that it puts more structure and restriction on the way policies
may be selected. Comparing CPI,ρ,ν(K; r) (Theorem 2) and CVI,ρ,ν(K; r) (Theorem 3) with Cρ,ν
(Proposition 1) we see that:

(1) Each concentrability coefficient in the definition of CPI,ρ,ν(K; r) depends only on a single or
two policies (e.g., π′k in cPI1,ρ,ν(K − k,m;π′k)). The same is true for CVI,ρ,ν(K; r). In contrast, the
mth term in Cρ,ν has π1, . . . , πm as degrees of freedom, and this number is growing as m→∞.

(2) The operator sup in CPI,ρ,ν and CVI,ρ,ν appears outside the summation. Because of that, we only
have K + 1 (K) degrees of freedom π′0, . . . , π

′
K (π′1, . . . , π

′
K) to choose from in API (AVI). On the

other other hand, sup appears inside the summation in the definition of Cρ,ν . One may construct
an MDP that this difference in the ordering of sup leads to an arbitrarily large ratio of two different
ways of defining the concentrability coefficients.

(3) In API, the definitions of concentrability coefficients cPI1,ρ,ν , cPI2,ρ,ν , and cPI3,ρ,ν (Defini-
tion 1) imply that if ρ = ρ∗, the stationary distribution induced by an optimal policy π∗, then

cPI1,ρ,ν(m1,m2;π) = cPI1,ρ,ν(·,m2;π) = (EX∼ν
[∣∣∣d(ρ∗(Pπ)m2 )

dν

∣∣∣2]) 1
2 (similar for the other two

coefficients). This special structure is hidden in the definition of Cρ,ν in Proposition 1, and instead
we have an extra m1 degrees of flexibility.
Remark 1. For general MDPs, the computation of concentrability coefficients in Definition 1 is
difficult, as it is for similar coefficients defined in [18, 17, 7].

6 Conclusion

To analyze an API/AVI algorithm and to study its statistical properties such as consistency or con-
vergence rate, we require to (1) analyze the statistical properties of the algorithm running at each
iteration, and (2) study the way the policy approximation/Bellman errors propagate and influence
the quality of the resulted policy.
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The analysis in the first step heavily uses tools from the Statistical Learning Theory (SLT) literature,
e.g., Györfi et al. [22]. In some cases, such as AVI, the problem can be cast as a standard regression
with the twist that extra care should be taken to the temporal dependency of data in RL scenario.
The situation is a bit more complicated for API methods that directly aim for the fixed-point solution
(such as LSTD and its variants), but still the same kind of tools from SLT can be used too – see Antos
et al. [7], Maillard et al. [8].

The analysis for the second step is what this work has been about. In our Theorems 2 and 3, we
have provided upper bounds that relate the errors at each iteration of API/AVI to the performance
loss of the whole procedure. These bounds are qualitatively tighter than the previous results such as
those reported by [18, 17, 7], and provide a better understanding of what factors contribute to the
difficulty of the problem. In Section 5, we discussed the significance of these new results and the
way they improve previous ones.

Finally, we should note that there are still some unaddressed issues. Perhaps the most important one
is to study the behavior of concentrability coefficients cPI1,ρ,ν(m1,m2;π), cPI2,ρ,ν(m1,m2;π1, π2),
cVI1,ρ,ν(m1,m2;π), and cVI2,ρ,ν(m1;π1, . . . , πk) as a function of m1, m2, and of course the tran-
sition kernel P of MDP. A better understanding of this question alongside a good understanding
of the way each term εk in E(ε0, . . . , εK−1; r) behaves, help us gain more insight about the error
convergence behavior of the RL/Planning algorithms.
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