
Global Visual-Motor Estimation for Uncalibrated Visual Servoing

Amir massoud Farahmand, Azad Shademan, and Martin Jägersand

Abstract— In this paper, we present two methods for the
estimation of a globally valid visual-motor model of a robotic
manipulator. In conventional uncalibrated visual servoing, the
visuo-motor function is approximated locally with a Jacobian.
However, for optimal task planning, or nonlinear controller
design with global stability guarantee, one needs to know a
model that provides some information about the behavior of
the system over the whole workspace. Our presented methods
remedy this drawback in uncalibrated visual servoing by incre-
mentally building a global estimator based on the movement
history. We implement two such methods. The first method is
a K-nearest neighborhood regressor over Jacobian that uses
previously estimated local models. The second method stores
previous movements and computes an estimate of the Jacobian
by solving a local least squares problem. Experimental results
show that both methods provide better global estimation quality
compared to the conventional local estimation method with
much lower estimation variance.

I. INTRODUCTION

Having a globally valid visual-motor model of a robot is
an important component for designing a globally stabilizing
visual-servoing controller or planning an optimal trajectory
for visually-guided tasks (See [1] for a tutorial on visual-
servoing). In many cases, the visual-motor model of the
robot is not available analytically (or it is burdensome to
find one). Examples include a mobile manipulator, a case
that cameras are moving or placed arbitrarily by hand. Or
in a situation where the control objective is not defined
by the end-effector plate of the robot, but involves picking
up and manipulating other objects where the desired visual
alignments are defined with respect to those objects. In prac-
tical applications often neither object geometry, nor the exact
grasp with which it is picked up is precisely known. Several
researchers have developed methods for estimating a visual-
motor model (i.e. Jacobian) online [2][3][4][5]. However,
most of these research have been focused on estimating
only locally valid models, and keeping only one such at a
time. Although local models can be used to design locally
stabilizing controllers, those models are not natural for global
planning and controlling approaches which usually need the
global knowledge of the system’s model.

Visual servoing has been extensively studied with differ-
ent control schemes such as position-based controllers [6],
image-based controllers ([7], [8]), or hybrid controllers [9].
These schemes can be either model-based (calibrated), where

Amir massoud Farahmand, Azad Shademan, and Martin Jägersand
({amir, azad, jag}@cs.ualberta.ca) are with the depart-
ment of Computing Science, University of Alberta, Edmonton, Alberta,
Canada.

Amir massoud Farahmand acknowledges the supported of Alberta Inge-
nuity Centre for Machine Learning (AICML). Azad Shademan is an Alberta
Ingenuity Student and acknowledges the support of Alberta Ingenuity.

the robot or the camera are calibrated, or model-free (uncal-
ibrated), where the model of the system is unknown. Model-
based visual servoing can be considered a solved problem
for local tasks with non-redundant manipulators. However,
there are still theoretical and practical implications for global
visual servoing due to nonlinear model estimation that make
visual servoing challenging.

The main contribution of this paper is introducing two
methods to globally estimate the visual-motor Jacobian. Both
methods utilize the available information more efficiently. In
contrast to usual local estimation methods that discard far
data-points (see Section II), our presented methods adopt
them in an effective way (Section III). Our first method
is an extension to the previous approaches that use Broy-
den methods. It uses a K-Nearest Neighborhood (K-NN)
regressor to combine previously estimated Jacobians. In this
method, we store local estimation of Jacobians and re-use
them to estimate the Jacobian for a new point (Section III-A).
The other method uses data-points directly, solves a locally-
defined least squares problem, and finds the best hyper-plane
that fits those data (Section III-B).

II. LOCAL METHODS

Local estimation of the visual-motor Jacobian without
explicit knowledge of the kinematic structure or the camera-
robot configuration for uncalibrated visual servoing has been
studied in the past. Hosoda and Asada [2] modify and extend
the weighted recursive least square (RLS) method to estimate
the Jacobian in real-time. They use a forgetting factor to
decay the influence of old data during the estimation process.
This helps the method to keep track of the time-varying
linear model which is caused by the joint variables’ changes
and the nonlinearity of the model. A similar approach to
recursively update the Jacobian, adapted from Broyden’s
method in optimization was presented by Jägersand et al. [3].
They also add a trust region method, taking into account the
comparatively slow visual updates in typical visual servoing
systems.

The local estimation of the Jacobian can deteriorate if the
motion of the robot is along a straight path in joint space
or in a singular configuration of image features. Sutanto et
al. study this problem and propose an exploratory motion
to ensure that the robot moves in the right direction, where
the numerical estimation of the Jacobian is stable [4]. These
papers assume a static goal. Piepmier et al. introduce the
quasi-Newton Jacobian estimation for the uncalibrated visual
servoing of a moving target [5].

In the remainder of this section, we formulate the visual-
motor Jacobian estimation problem and review the local



estimation method in more detail. We also specify our control
method for visual servoing.

A. Problem Formulation

Consider a robotic manipulator that consists of a series
of revolute and prismatic joints characterized by joint angles
or displacement q ∈ Rn and a vision system that observes
the environment. This vision system can be attached to the
end-effector (eye-in-hand) or can observe the robot from a
fixed position (eye-to-hand). By changing joint variables,
the robot moves and the image projected on each camera
changes. Defining some feature points on camera images, we
can relate the position of the joint variables to the position of
those feature points. If we denote xi ∈ R as the value of one
of the visual features, there is a relation between q and x such
as xi = fi(q). Depending on the way we define the feature,
fi depends on the kinematic model of the robot and the
camera model. Note that this function is different for image-
based or position-based visual servoing, but the essence of
it -which relates feature variables to the joint variables- is
the same. The goal of this section is to derive a method to
locally estimate this model.

Generalizing the previous formalism to several features,
say m, the feature vector X ∈ Rm and visual-motor function
F (q) are defined as follows

X := [x1;x2; ...;xm]m×1 (1)
F := [f1(q); f2(q); ...; fm(q)]m×1 (2)

X = F (q). (3)

Let q(t) be a function of time; the dynamics of feature points
are

dX

dt
= J(q)

dq

dt
, (4)

where J(q) = ∂F (q)/∂q is the visual-motor Jacobian. To
perform image-based tasks like regulating feature points to
a specified position, one can do dynamic programming, use
local controllers or design a complicated nonlinear controller
to change q(t) in such a way that the task would be achieved.
In general, the visual-motor function F is not known for
an arbitrary robot-camera system. One approach to find the
Jacobian is to calibrate the parameters and analytically derive
the Jacobian. Another approach that we pursue here is to
approximate the visual-motor Jacobian matrix J . We do not
assume any a priori knowledge about the robot or camera.

B. Estimation

Let Ji ∈ Rn be the i-th row of the visual-motor Jacobian
J . We can formulate the estimation problem as the following
least squares optimization problem

Ĵi = arg min
Ĵ∈Rn

∫ ∞

t=0

(
dxi

dt
− Ĵ

dq

dt

)2

dt (5)

≈ arg min
Ĵ∈Rn

∞∑
l=1

(
∆xi(l)− Ĵ∆q(l)

)2

(6)

where ∆xi(l) = xi(l)−xi(l−1) and ∆q(l) = q(l)−q(l−1)
for the discrete-time counterpart. However, F is a nonlinear

function of q, so J(q(t)) is a time-varying quantity. If we
simply solve the previous least square problem, the estimated
Ĵi will not be a good approximation of Ji(t) because it is
minimizing the error over the whole experience trajectory. In
order to remedy this problem, we can force the optimizer to
pay more attention to errors in recent history by introducing
a forgetting (or discounting) factor 0 < λ ≤ 1 to our least
squares problem:

Ĵi(t) ≈ arg min
Ĵ∈Rn

∞∑
l=1

λt−l
(
∆xi(l)− Ĵ∆q(l)

)2

. (7)

When λ = 1, this is equivalent to the previous opti-
mization problem. We can solve this optimization problem
using a modified version of Recursive Least Squares (RLS)
method [10]. The method is defined by the following recur-
sive equations for estimating each Ĵi:

Ĵi(t) = Ĵi(t− 1) + Ki(t)
(
∆xi(t)− Ĵi(t− 1)∆q(t)

)
(8)

Ki(t) = Pi(t− 1)∆q(t)
(
λI + ∆q(t)T Pi(t− 1)∆q(t)T

)−1

(9)
Pi(t) = (I −Ki(t)∆q(t)T )Pi(t− 1)/λ. (10)

Pi is usually initialized as a sufficiently large positive definite
matrix, e.g. Λ × I where Λ is a large number and I is the
identity matrix. There are other online parameter estimation
methods such as Broyden, Projection Algorithm or Least
Mean Square (LMS) algorithms that can be used similarly
(See [10] and [3]).

C. Control

Based on our estimation, we can take different approaches
for designing a controller. Here, we review the linear control
approach. Let the goal of the control be to regulate features
X to a desired X∗ (which can be function of time, i.e. a
path). From (4), the dynamics of the error system follows:

e = X −X∗ ⇒ ė =
∂F (q)

∂q
q̇ = J(q)e. (11)

Assuming that q̇ = Ke, a linear controller, we have

ėi = J(q)Kei. (12)

The stability of this linearized system is not directly related
to the stability of the original system in (11). However, we
can expect that if this linearized model is stable and slowly-
varying, the original system will also be stable. In order
to make Equation (12) stable, we need to choose K such
that JK becomes Negative Definite (N.D.). One choice is
Inverse Plant controller where K = −J−1 or K = −J†

for a more general case1. We can also assign eigenvalues
arbitrarily using Singular Value Decomposition (SVD). First
decompose J = UΣV T . We can write

JK = (UΣV T )(V DUT ) = U(ΣD)UT = UΛ∗UT . (13)

in which Λ∗ = ΣD. Since, U is unitary, singular values
of UΛ∗UT is equal to singular values of Λ∗. Therefore, by

1A† is the pseudo-inverse of A.



setting singular values of Λ∗, we can set singular values of
UΛ∗UT and JK - which is our desire. By choosing D =
Σ†Λ and constructing K as K = −V DUT , we can achieve
our goal. Note that in all these controllers, K depends on
J(q(t)) and so on q(t).

III. GLOBAL ESTIMATION METHODS
The main drawback of local estimation methods is their

local validity. For a nonlinear system such as a robot, it is
difficult to design a controller to make the system globally
stable without knowing the global model of the system. Even
if one can design such a controller (e.g. by slowing-down the
system and using conservative controllers), the problem of
planning remains unsolved. For finding an optimal path (e.g.
one that minimizes the control effort for reaching a far point,
or a one that is smooth, or a one that avoids obstacles, the
controller needs to know a global model of the system. This
is the main motivation for developing two new estimation
methods that are introduced in this section.

A. K-NN Regression-based Method
This method combines estimates obtained by a local

estimation method (such as the RLS(λ) we mentioned in
Section II) to give an estimation of the Jacobian J(q) for a
not-previously-seen point q. In a local method, we throw
away all previous estimations and only rely on the most
recent one. This works when you just want to locally control
your robot, but it does not help you to do a global planning
in which you need Jacobian estimation for other points in
joint space too.

We use a K-Nearest Neighborhood (K-NN) regression
method to combine previous local estimates. Assume that
we have a database of estimated {Ĵ (i)(q(i))} (i = 1, ..., n) in
which q(i) indicates the joint configuration q at the position
where the estimate Ĵ (i)(q(i)) is added to the database (we
will discuss how these estimates are added to the dataset
soon), and n is the number of estimates in the database.
To estimate the Jacobian at a new point q (which is not
necessarily the same as one of {q(i)}, the K-NN regressor
first sorts2 estimates Ĵ (i)(q(i)) (i = 1, ..., n) based on the
distance of their q(i) to q (this can be an Euclidean distance).
Let’s denote this set as {Ĵ(i,n)(q(i,n))} where q(1,n) is the
closest point to q. Afterward, it computes ĴKNN (q) (the
global estimate of the Jacobian at q) in the following way:

ĴKNN (q) =
1
K

K∑
i=1

Ĵ(i,n)

(
q(i,n)

)
. (14)

In order to add a new estimate Ĵ (i)(q(i)) to the database, it
compares the current Jacobian estimate of the local estimator
at q (which is Ĵ(q(t))) with the global estimation ĴKNN (q).
To compare two Jacobians, we need to choose a matrix norm.
Here, we use L2 induced matrix norm:

dist(J1, J2) = ‖J1 − J2‖2 = sup
q

‖(J1 − J2)∆q‖2
‖∆q‖2

(15)

2In practice, there is no need for actually performing a sorting algorithm if
one uses an elegant data-structure for storing data. Here we mention sorting
in order to clarify the procedure.

If the difference between Ĵ(q(t)) and ĴKNN (q(t)) is
greater than some threshold ε, the current Jacobian estima-
tion, Ĵ(q(t)), will be added to the database. If it is not,
it means that the global estimator approximates the current
local estimates rather well, and there is no need to add any
new data point.

Initially, the estimation database is empty. The robot starts
moving from some point in the joint space and follows path
q(t). Meanwhile, the local estimator (e.g. RLS(λ)) approxi-
mates J(q(t) by Ĵ(q(t)). The global estimator compares this
matrix to its global estimation. Because the initial database
is empty, we need to define a corresponding global Jacobian
in order to compare distances. We can simply define a zero
matrix as the output of the global estimator in the empty
database case. The distance between a matrix Ĵ(q(t1)) to
zero matrix is large enough; therefore, it adds the current
local estimate Ĵ(q(t1)) to the database. In the close vicinity
of q(t1), the error between two estimations are small, and
no point will be added. However, when the distance between
q(t1) and the current joint values exceeds a certain amount
(which depends on ε and the Lipschitz constant of F (q)),
the error will be more than the threshold and a new point
will be added. This process continues.

There are at least two important questions about this
method. One is that whether we can use the convergence
result of standard K-NN regression, where there is an inde-
pendent identically distribution (i.i.d.) assumption about the
source of data, for this problem [11]. However, samples that
come from a moving robot are dependent with each other,
and those convergence results (which relates the approxima-
tion accuracy to the number of samples) cannot not readily
be applied to this situation. The other problem is that local
estimates of Jacobian, Ĵ(q), which we use as a reference
value, may be a biased estimation for the true Jacobian J(q)
at that point. This issue will be investigated in Section IV.

B. Local Least Squares (LLS) Method

Our second proposed method for globally estimating a
Jacobian is directly fitting the best hyper-plane to the data
points around the point q under consideration. Because the
Jacobian is the tangent plane to the visual-motor function,
finding the Jacobian is simply equivalent to fitting the best
plane at given point q.

Data points for this method are all previous q(t) and X(t)
in the history of the system. Therefore, for this approach one
should keep the history of all movements the robot has made.
In contrast to the method introduced in Section III-A, we do
not need to store local estimates of Jacobian. Instead, we
calculate the Jacobian whenever it is needed.

To be more precise, suppose that we want to estimate
Ji = ∂fi(q)

∂q , which we can approximately write as ∆xi '
∂fi(q)

∂q ∆q. Denoting the set of all previous features and
joint parameters as {xi(l)} and {q(l)} for l = 1, · · · , t,
respectively - in which t is the current time. We define the



following optimization problem:

ĴLLS
i (q, ε) = arg min

Ĵ∈Rn

t∑
r=1

t∑
s=1

(
∆x

[r,s]
i − J∆q[r,s]

)2

×I (‖q(r)− q‖ < ε)
×I (‖q(s)− q‖ < ε) (16)

in which ∆x
[r,s]
i := xi(r) − xi(s), ∆q[r,s] := q(r) − q(s),

and I{P} is the indicator function, i.e. it is one if P is true
and zero otherwise3.

This optimization problem fits the best hyper-plane Ĵ to
a local neighborhood of q. If this neighborhood is small
enough while the number of samples in it is large (so the
total number of samples should be very large), we can expect
that the result of this optimization problem be close to
Ji = ∂fi(q)

∂q .
We can also define a similar optimization problem based

on the K-nearest neighborhood of q. Changing K changes
the radius of ball containing the K-nearest points. The exact
relation between K and the radius depends on the geometry
of the space and the way data points are generated. Roughly
speaking, if we have t samples and the space is effectively
d-dimensional, K

t = Θ(εd).
In our implementation, we use a K-nearest neighborhood

scheme, and the following optimization problem:

ĴLLS
i (q, K) = arg min

Ĵ∈Rn

t∑
r=1

t∑
s=1

(
∆x

[r,s]
i − J∆q[r,s]

)2

×I
(
q(r) ∈ {q(1,t), · · · , q(K,t)}

)
×I

(
q(s) ∈ {q(1,t), · · · , q(K,t)}

)
(17)

in which q(r,t) is the r-th nearest neighborhood to q and the
x

(r,t)
i is the corresponding xi.
If the model is time-variant, old data points may not

accurately encode the model of the system. In these cases,
we need a forgetting mechanism such as weighting old data
or throwing them away.

It is apparent that if the robot has no previous experience
in a certain region of its joint variable space, this estimate
may be not so accurate. This is true for all methods that do
not use any kind of a priori assumption (like the parametric
class of the model or the smoothness of it).

IV. EXPERIMENTS

In this section, we study different aspects of our pro-
posed methods and compare them with the local estimator.
The experiments are performed in MATLAB using Corke’s
Robotics Toolbox [12] and the Epipolar Geometry Tool-
box [13]. Comparisons results on measures such as the global
estimation error, the effect of noise, the effect of number of
neighbors, and the feasibility for visual servoing task are
reported.

3Considering all pairs of nearby data points may be redundant, and a
subset of them may be enough. We have not analyzed the subset selection
effect, specially when measurements are noisy and the estimation has error
too.

For all these experiments, we use the Puma 560 model
with an eye-to-hand configuration. To define our visual
features, we use a stationary stereo rig setup. The visual
features are the projections of the end-effector’s position onto
the image space of each of those cameras. Therefore, the
feature space is four dimensional (x ∈ R4). The position
of the end-effector has only three dimensions, therefore we
used the first three joints of the Puma arm, q ∈ R3, and J is
4× 3 matrix. By adding more feature points (e.g., observing
other rigid points on the manipulator), the generalization of
our proposed method to estimate the full m× 6 Jacobian is
straightforward.

A. Global estimation error

We define a distance measure between the true Jacobian
J(q) and the estimated Jacobian (Ĵ(q) for the local estima-
tion method or ĴKNN (q) and ĴLSS(q) for global methods)
to compare the quality of global estimation. A small distance
is important for planning and controlling approaches which
use global model of the system. To define that distance, we
extend (15) from a point-wise distance to global distance by
taking an integral of it over all possible joint values:

Dist(J1, J2) =
∫

q∈D(q)

‖J1(q)− J2(q)‖2dq (18)

where D(q) is the domain of possible joint values which
depends on the specific robot under consideration. If some
specific subspace of D(q) is more important (e.g. the robot
usually works around those places), we can use weighted
version of the integral.

In order to numerically evaluate this integral (e.g.
Dist(J, ĴKNN )), we estimate it by a Monte Carlo method,
i.e. picking a random sample and evaluating the integrand
at that point, and finally averaging all those values. We use
1000 random sample points in our experiments with sample
points selected from a normal distribution with zero mean
and unit variance (thus, our integral is biased toward the
joint values closer to the q = 0).

For the first set of experiments, we force the robot to
follow a randomly generated piece-wise smooth trajectory in
the joint space and measure the quality of global estimation.
Trajectories are made by selecting random points in the joint
space and smoothly connecting them. In our implementation,
we use 101 random points in the joint space (with joint
values selected from a normal distribution N(0, I3×3)) and
connecting each pair of them by 50 intermediate smoothly
connected points. We add some level of noise to these tra-
jectories. Actuator noise, which exists in real-world problem
anyway, improves the quality of identification as it increases
the local spanning dimension of the trajectory. Without this
noise even the local estimation method may fail to accurately
estimate the Jacobian.

We compare Dist(J, ĴKNN ), Dist(J, ĴLLS), and
Dist(J, Ĵ(t)) at several points during the movement of the
robot in which J is the true Jacobian and Ĵ(t) is the last
estimation made by the local method (t is the time we are



500 1000 1500 2000 2500 3000 3500 4000 4500 5000

5

10

15

20

25

30

Steps

D
is

t

Local estimator

K!NN estimator

LLS estimator

Fig. 1. Estimation error (18) for different estimation methods during the
movement of the robot. Dotted lines are one standard deviation error around
the average error. Blue lines are for the local estimator, green lines are
for K-NN global estimator, and red lines are for local least squares global
estimator.

calculating these values). The result is depicted in Fig. 14.
This comparison shows that the performance of the LLS

estimator (Section III-B) gradually increases (by decreasing
(18)) while the robot moves around. The performance of the
K-NN estimator (Section III-A) has an increasing behavior
too, but the rate of change is much smaller comparing to the
LLS method.

One may wonder why the K-NN does not perform so well.
Fig. 2 suggests that this may be due to the high amount
of error in each local estimates Ĵ (i) which is used by K-
NN method (14). This figure shows the local Jacobian error
through time evolution5. It reveals that the local estimates
that we get from RLS(λ) has a rather high amount of error
and this error does not go to zero. If the underlying system
was linear, we should expect the convergence to zero, but
for this nonlinear system the property does not hold. One
may get better results by tweaking λ, but the qualitative
behavior should not be that different. Each of those estimates
are possibly biased because of RLS(λ) procedure we use.
Whether the main source of error is this or some other
phenomenon is not clear yet.. Nevertheless, we can see that
the performances of both proposed methods are better than
the local method except in the early movement stages.

Another important property, which is seen in Fig. 1, is the
reduced variance of global methods. This means that both
methods provide a more stable estimation of the Jacobian
than local method does.

4The data in this figure is the average result of 20 different runs, each
of them consists of 5010 robot’s steps (101 random points as defined
previously). The number of neighbors for K-NN method is selected as
ceil(log(steps)), which is around 2 to 4 for this range of values, and
the number of neighbors for LLS method (as defined in (17)) is fixed as 30.
λ for RLS(λ) method is 0.99 for all experiments including this one. The
standard deviation of the contaminating noise is 0.005. No optimization was
made for setting these parameters.

5The error between the Jacobian at q(t) at time t and the true Jacobian
at the same point. Note that here we use (15) instead of (18)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

30

35

Steps

di
st

 (l
oc

al
 e

st
im

at
io

n 
er

ro
r)

Local Linear Estimation
K!NN Global Estimation
LLS Global Estimation

Fig. 2. Local Jacobian error (15) for different estimation methods during a
sample movement of the robot. The data are smoothed by a moving average
filter with the window size of 50.

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

11

12

13

14

Steps

Di
st

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

5

10

15

20

25

30

Steps

Di
st

s.d. = 0.005
s.d. = 0.01
s.d. = 0.05

s.d. = 0.005
s.d. = 0.01
s.d. = 0.05

Fig. 3. The effect of noise level (measured as the standard deviation of a
normal random variable) on the quality of global estimation for K-NN (top)
and LLS (bottom) global estimators.

B. Effect of noise

One important question is the effect of noise on the
estimation accuracy. We know that for identifying a dynam-
ical system, we need to excite it properly, i.e. the input
signal must be persistent exciting [10]. By analogy from
identification theory of linear time invariant systems, we
expect that adding a white noise to the input signal makes
it persistent exciting. To study this phenomenon, we add
different levels of noise to the predefined smooth trajectories
we used in the previous experiment. More precisely, the noise
comes from N(0, σ2I3×3) with σ = 0.005, 0.01, 0.05. Fig. 3
shows the effect of noise on the quality of global estimation6.

This figure indicates that the increased level of noise leads
to better estimates. This is more evident for LLS method,
though even σ = 0.05 works much better than e.g. σ = 0.005
for K-NN too.

C. Effect of neighborhood size

Now we study the effect of K, the size of neighborhood,
on the performance of K-NN and LLS methods (See 14 and
17). Fig. 4 shows the effect of K for both methods. Here, we

6The data in this figure is generated similar to the previous experiment.



5 10 15 20 25 30 35 40
10

11

12

13

14

K

Di
st

K!NN

7 10 20 30 40 50 60 70 80
2.5

5

10

15

20

25

K

Di
st

LLS

Samples NO = 255
Samples NO = 1020
Samples NO = 5100

Samples NO = 255
Samples NO = 1020
Samples NO = 5100

Fig. 4. The effect of K (number of neighborhoods) on estimation error
(18) for K-NN (top) and LLS (bottom) methods with different number of
samples.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12

Time (seconds)

D
is

ta
nc

e 
to

 s
et
!p

oi
nt

 (e
rro

r)

Fig. 5. The error of visual servoing using LLS estimator. The error is the
Euclidean distance of the current feature position to the goal feature.

show results with different number of sample points. In this
range of Ks, it seems that the bigger K results in smaller
global error7.

D. Visual servoing performance

Finally, we show the feasibility of these estimations for
visual servoing task. We select several random end-effector
positions, project them to our image spaces (produces a four
dimensional feature point) to define random feature space
goals. We use the visual-motor Jacobian estimate provided by
LLS estimator combined with SVD-based design introduced
in Section II-C. All singular values are set to 0.5 with an
extra saturating controller. Fig. 5 shows the regulation result.
The set-points are changed several time during the course of
action, causing a spike in the errors seen in the figure. In
each case, the robot regulates the error to zero successfully.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed two methods for global esti-
mation of visual-motor models. The first method uses K-
NN regressor to combine previously estimated visual-motor
Jacobians. The second method directly uses data points to fit

7These diagrams are the average result of 10 runs.

the best hyper-plane to a small neighborhood of the query
point. Our simulations showed that these methods, specially
LLS, outperform the conventional local estimation method.
This result is important because of two reasons. First, it
presents a new approach to uncalibrated visual servoing:
a one in which designer can use previously unavailable
tools such as dynamic programming and global nonlinear
controllers to develop high-performance systems. We are
going to pursue this direction in our future research. The
second is showing the potential benefit of using the rich set
of available regression tools instead of simple local model.

Nevertheless, there are several other research directions
like extending ideas of Lapresté et al. and Mansard et al. for
directly estimating global inverse Jacobian matrix instead
of the global forward Jacobian which we did in this paper
([14][15]), developing a systematic method for selecting K
in both K-NN and LLS, incorporating prior knowledge such
as smoothness of visual-motor Jacobian into the estimator,
and implementing these methods on a real-world hardware.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robotics and Automation, vol. 12, no. 5, pp.
651–670, Oct. 1996.

[2] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true Jacobian,” in IEEE/RSJ International Conf. Intelligent
Robots and Systems (IROS), vol. 1, September 1994, pp. 186–193.

[3] M. Jägersand, O. Fuentes, and R. Nelson, “Experimental evaluation
of uncalibrated visual servoing for precision manipulation,” in IEEE
International Conf. Robotics and Automation (ICRA), vol. 4, April
1997, pp. 2874–2880.

[4] H. Sutanto, R. Sharma, and V. Varma, “The role of exploratory move-
ment in visual servoing without calibration,” Robotics and Autonomous
Systems, vol. 23, pp. 153–169, 1998.

[5] J. A. Piepmeier, G. V. McMurray, and H. Lipkin, “Uncalibrated
dynamic visual servoing,” IEEE Trans. Robotics and Automation,
vol. 20, no. 1, pp. 143–147, February 2004.

[6] W. J. Wilson, C. C. W. Hulls, and G. S. Bell, “Relative end-effector
control using cartesian position based visual servoing,” IEEE Trans.
Robotics and Automation, vol. 12, no. 5, pp. 684–696, October 1996.

[7] L. Weiss, A. Sanderson, and C. Neuman, “Dynamic sensor-based
control of robots with visual feedback,” IEEE Journal of Robotics
and Automation, vol. 3, no. 5, pp. 404–417, 1987.

[8] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. Robotics and Automation, vol. 8,
no. 3, pp. 313–326, June 1992.

[9] E. Malis, F. Chaumette, and S. Boudet, “2-1/2-d visual servoing,” IEEE
Trans. Robotics and Automation, vol. 15, no. 2, pp. 238–250, April
1999.

[10] K. J. Astrom and B. Wittenmark, Adaptive Control. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1994.

[11] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. New York, USA: Springer-
Verlag, 2002.

[12] P. Corke, “A robotics toolbox for MATLAB,” IEEE Robotics and
Automation Magazine, vol. 3, no. 1, pp. 24–32, Mar. 1996.

[13] G. Mariottini and D. Prattichizzo, “Egt: a toolbox for multiple view
geometry and visual servoing,” IEEE Robotics and Automation Mag-
azine, vol. 3, no. 12, December 2005.

[14] J. Lapresté, F. Jurie, M. Dhome, and F. Chaumette, “An efficient
method to compute the inverse Jacobian matrix in visual servoing,” in
IEEE Intl. Conf. Robotics and Automation, April 2004, pp. 727–732.

[15] N. Mansard, M. Lopes, J. Santos-Victor, and F. Chaumette, “Jacobian
learning methods for tasks sequencing in visual servoing,” in IEEE/RSJ
International Conf. Intelligent Robots and Systems, October 2006, pp.
4284–4290.


