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 Abstract – Designing an intelligent situated agent is a 

difficult task because the designer must see the problem from the 

agent’s viewpoint, considering all its sensors, actuators, and 

computation systems. In this paper, we introduce a bio-inspired 

hybridization of reinforcement learning, cooperative co-

evolution, and a cultural-inspired memetic algorithm for the 

automatic development of behavior-based agents. Reinforcement 

learning is responsible for the individual-level adaptation. 

Cooperative co-evolution performs at the population level and 

provides basic decision-making modules for the reinforcement-

learning procedure. The culture-based memetic algorithm, which 

is a new computational interpretation of the meme metaphor, 

increases the lifetime performance of agents by sharing learning 

experiences between all agents in the society. 

In this paper, the design problem is decomposed into two 

different parts: 1) developing a repertoire of behavior modules 

and 2) organizing them in the agent’s architecture.  

Our proposed cooperative co-evolutionary approach solves 

the first problem by evolving behavior modules in their separate 

genetic pools. We address the problem of relating the fitness of 

the agent to the fitness of behavior modules by proposing two 

fitness sharing mechanisms, namely uniform and value-based 

fitness sharing mechanisms. 

The organization of behavior modules in the architecture is 

determined by our structure learning method. A mathematical 

formulation is provided that shows how to decompose the value 

of the structure into simpler components. These values are 

estimated during learning and are used to find the organization 

of behavior modules during the agent’s lifetime.  

To accelerate the learning process, we introduce a culture-

based method based on our new interpretation of the meme 

metaphor. Our proposed memetic algorithm is a mechanism for 

sharing learned structures among agents in the society. Lifetime 

performance of the agent, which is quite important for real-world 

applications, increases considerably when the memetic algorithm 

is in action. 

 Finally, we apply our methods to two benchmark problems, 

an abstract problem and a decentralized multi-robot object-

lifting task, and we achieve human-competitive architecture 

designs. 

Index Terms – behavior-based system design, 

cooperative co-evolution, reinforcement learning, culture-

based method, memetic algorithm, structure learning, behavior 

cooperative co-evolution. 

I.  INTRODUCTION 

Our main research goal is to develop methods for the 

automated design of situated agents. A situated agent is an 

agent that directly observes the environment using sensors and 

decides which action is most appropriate at any time. This 

agent does not usually have complete knowledge of the 

environment; instead, it faces the environment directly and its 

decisions have immediate consequences. This problem is 

difficult because the agent must deal with a potentially high-

dimensional, unknown stochastic dynamical system. 

 We propose a bio-cultural approach for designing a 

situated agent. Though our approach is general, we formulate 

it for a hierarchical behavior-based architecture (See 

[Brooks91] or [Ziemke98] for discussion of situated agents 

and behavior-based systems, and refer to [Prescott99] for a 

comparison of hierarchical behavior-based systems with their 

biological counterparts). We decompose the design problem 

into two sub-problems of developing behavior modules and 

structure design and use a novel hybrid mechanism for solving 

both of them. Our hybrid approach has three main elements: 

(1) Cooperative co-evolution, (2) Reinforcement Learning 

(RL), and (3) a culture-based memetic algorithm. 

A cooperative co-evolutionary mechanism, similar to 

[Potter00], is responsible for developing the new behavior 

modules. These modules are cooperatively co-evolved in order 

to maximize the performance (i.e. fitness; we use these two 

terms interchangeably) of agents. The role of the 

reinforcement learning mechanism is to organize these 

evolved behavior modules in the agent’s architecture. 

Reinforcement learning provides an adaptation mechanism on 

the timescale of the agent’s lifetime. Moreover, to reuse 

learned knowledge gained by other agents, our approach 

shares the learned structure of the high-performing agents to 

the “community” or “society” of agents. This knowledge 

sharing is accomplished through our memetic algorithm, 

which is quite different from the current belief of what a 

memetic algorithm should be (we discuss this issue in Section 

III.C). In our approach, memes act as a priori knowledge for 



the structure learning process. This knowledge sharing 

increases the expected lifetime fitness of agents. The lifetime 

fitness, as opposed to the fitness, is the measure of an agent’s 

performance from the beginning of learning to the end of an 

agent’s lifetime. This is an important measure of performance 

because in many problems we would like our agent to behave 

well as soon as possible, and the lifetime fitness measures this 

quality of the agent. 

 The motivation behind this multi-scale task 

decomposition is (1) to benefit from the global search 

capability of an evolutionary mechanism, (2) to take 

advantage of the fast adaptation of structure learning, and (3) 

to reuse the previous experiences of other agents in the society 

to accelerate the learning process. We will further discuss the 

idea behind our approach in Section III and present its details 

in Section V. 

The idea of designing an agent’s controller by 

decomposing it to several sub-problems and using bio-inspired 

methods to solve them is potentially applicable to agents with 

various types of architecture. However, we chose the 

Subsumption Architecture (SSA) ([Brooks86]) from the 

behavior-based paradigm as our agent’s architecture because 

of its successful implementations in real-world problems (e.g. 

[Brooks89], [Wang96], [Matari!98], [Parker98], and [Nili01]). 

The organization of the paper is as follows. In Section II, 

we survey related topics. More specifically, we first introduce 

the behavior-based paradigm and motivate the desirability of 

having automatic agent design methods (Section II.A), give a 

survey of learning and evolutionary approaches for agent 

design (Section II.B), and briefly introduce reinforcement 

learning (Section II.C). Afterwards, we detail the main ideas 

of our approach in Section III. We describe the roles of 

cooperative co-evolution (Section III.A), learning (Section 

III.B), and culture (Section III.C) in our framework. After 

formalizing the agent in Section IV, we describe our design 

approach in detail in Section V. There, we propose our 

structure learning (Section V.A), behavior cooperative co-

evolution (Section V.B), and memetic algorithms (Section 

V.C). Thereafter, we apply our approach to the decentralized 

multi-robot object-lifting task and an abstract general 

behavior-based problem in Section VI. We review our 

important results and discuss them in Section VII. Conclusions 

and future research directions are discussed in Section VIII. 

II.  RELATED TOPICS AND MOTIVATIONS 

The goal of this section is threefold: We present the general 

motivation behind this research, provide the basic background 

of behavior-based systems and reinforcement learning needed 

to understand the proposed method, and review some related 

work. 

A. Behavior-based Paradigm 

We chose behavior-based paradigm as the design 

methodology of the agent’s lower level “mind” or controller 

([Brooks86] and [Brooks91]). Behavior-based systems are 

biologically plausible, relatively robust, and fault-tolerant 

architectures that have been used for several real-world, 

challenging robotic tasks (e.g. [Brooks89], [Wang96], 

[Matari!98], [Parker98], and [Nili01]). 

 Example of Behavior-based Systems: To explain the 

behavior-based paradigm and the meaning of “behavior” in it, 

we give a simple example. Consider a robot designer who 

wants to design a controller for a mobile robot. Her goal is to 

create a “robot that moves around and avoids obstacles”. The 

description of this task, as stated in the previous sentence, is 

the subjective behavior of the robot and apparently depends on 

the eye of the beholder. 

To achieve this task, she designs two control modules. 

The first module gives random movement commands to the 

mobile robot. This module does not get any input from 

sensors, but changes its output command from time to time. 

She names this module “wandering behavior” because she 

expects that whenever it controls the robot, the robot wanders 

around. The other module receives input from proximity 

sensors and rotates the robot whenever it comes close to an 

obstacle. She names this module “obstacle avoidance 

behavior” with a similar argument. Thereafter, she arranges 

these two behavior modules in the agent’s architecture to 

manage their interaction through an arbitration mechanism. 

The arbitration mechanism determines which of these two 

behavior modules should control the robot at any time. A 

robot with these modules and architecture can be considered 

as an example of a situated agent. It is situated because the 

controller directly observes the environment and directly 

commands the actuators. No part of the architecture builds an 

explicit, abstract-level representation of the world, and there is 

no planning module for manipulating symbols. 

 The observable behavior of the robot is the result of 

interaction of these two “behavior” modules with the 

environment. It is possible that the interaction of these two 

modules with the environment will lead to complex behaviors, 

which have not been anticipated by the designer. 

 For instance, in a heavily cluttered environment, where 

there is always at least one object ahead of the robot, the 

“obstacle avoidance” behavior module alone (without the 

“wandering” behavior module) may always force the robot to 

wander around and avoid obstacles (because there is always an 

object in front of the robot which forces it to move from its 

current position). In this case, the robot’s behavior does not 

appear as mere “obstacle avoidance”, rather it can be 

interpreted as “moving around the field and avoiding 

obstacles”. This “behavior” of the robot is probably different 

than the designer’s expectation of a pure “obstacle avoidance” 

behavior module. 

 Two Notions of Behavior: Note that in the previous 

discussion we used the term “behavior” in two different 

meanings. The first is when we refer to each of those internal 

components of the robot’s controller. We call them “behavior 

modules” because they are intended to produce some specific 

behaviors, though it is possible that they behave differently in 

practice. The second is the phenomenological interpretation of 

the behavior. This interpretation refers to the behavior of the 

agent as a whole when it interacts with the environment. This 



behavior is the emergent result of possibly complex 

interactions of those “behavior modules” with the 

environment. In this paper, we use “behavior” in both senses. 

Whenever we use the word “behavior” or phrase “behavior 

module”, we intend the former meaning. We use “overall 

behavior of the agent” when we are referring to the second 

interpretation. 

 Behavior-based Systems Design: Because of the 

complex interactions of behavior modules with the 

environment and themselves, designing a behavior-based 

system to achieve a certain goal is not an easy job. Adding a 

new behavior module may influence other behavior modules 

and considerably change the overall behavior of the agent in 

an unexpected manner. Indeed, one main drawback of 

behavior-based systems has always been the difficulty of their 

design. In practice, a designer often uses the tedious bottom-

up trial-and-error approach to devise a behavior-based system 

that meets the required performance objectives [Brooks86]. 

 The difficulty of behavior-based system design suggests 

that we should automate the design procedure to relieve the 

burden on the designer. In spite of many successful 

implementations of behavior-based systems (e.g. [Brooks89], 

[Wang96], [Matari!98], [Parker98], and [Nili01]), most of 

them are hand-designed, and there is not much work on 

automatically designing an agent’s architecture (all the 

aforementioned systems are hand-designed). The current work 

suggests a hybrid approach for facilitating the design 

procedure. In our approach, we evolve behavior modules and 

learn the organization of those modules in the architecture. It 

satisfies all aspects of autonomy mentioned in [Ziemke98], i.e. 

(1) the behavior modules are self-organized, (2) the arbitration 

mechanism is learned, and (3) the approach treats internal 

memory and the input from external sensors in the same way. 

B. Evolution and Learning 

The design problem can be viewed as an optimization problem 

in which we are looking for an appropriate set of parameters 

such that our goals are satisfied. For hierarchical behavior-

based systems, such as the Subsumption Architecture, we are 

searching for a set of parameters that describes the internal 

workings of behavior modules as well as their organization 

(structure) in the architecture. A good design methodology for 

situated agents must have the following properties: 

• Find a suitable and working set of parameters 

quickly 

• Work with hierarchical and multi-level decision-

making architectures 

• Cope with non-stationary environments 

• Produce modular and reusable components 

 

 Most traditional adaptation approaches do not provide 

this amount of flexibility. For instance, learning algorithms 

that are based on local search may not find a good solution in 

a large and bumpy parameter space and can get trapped in a 

local optimum. This is especially true for policy-gradient 

reinforcement learning methods (See [Baxter01], [Kakade02], 

and [Ghavamzadeh06] for a few examples of policy-gradient 

methods). Nevertheless, learning methods can be relatively 

fast in finding some solutions even in non-stationary 

environments, given that the learning parameters are set 

properly. On the other hand, evolutionary approaches can 

usually find good solutions for a problem given enough time. 

Nevertheless, traditional evolutionary methods are slow and 

do not handle non-stationary environments very well. 

Therefore, they are not very suitable for a situated agent that 

has to respond quickly to changes in the environment. 

Moreover, most of them do not produce modular controllers, 

which is an important issue for designing a reusable controller. 

Learning and Evolution for Behavior-based System 

Design: There have been some efforts to use learning or 

evolution to partially automate the design procedure for 

behavior-based systems. Examples of learning-based 

approaches for behavior-based system design include Maes et 

al. which used learning to adjust firing precondition of 

behavior modules [Maes90]. Mahadevan et al. proposed a 

learning mechanism to adjust behavior modules of the fixed-

structured Subsumption architecture [Mahadevan92]. In 

[Matari!92], they developed a method for learning an 

environment’s topological map. In [Matari!94] and 

[Matari!97], they used shaped reinforcement signal and 

progress estimator to accelerate learning. In [Michaud98], a 

memory-based approach was used to select behavior modules. 

In [Kohl04], they used a policy-gradient method to find a good 

gaiting for a quadrupedal locomotion. In [Matari!01], one can 

find a summary of several works that use the learning 

approach to design behavior-based systems. 

Artificial evolution has also been used to design situated 

agents ([Harvey93], [Floreano96], [Floreano00], [Nolfi00], 

and [Chernova04]). Two examples of more closely related 

work are [Koza94] which used genetic programming to evolve 

SSA-like architectures in the wall following task and 

[Togelius04] which devised layered incremental evolution in a 

SSA-like architecture. This latter work tried to evolve modular 

behavior-based systems. [Floreano08] provides a recent 

survey of evolutionary robotics. 

Taking advantage of the good properties of evolution and 

learning in a complementary manner is highly desirable. There 

is some research exploiting the good properties of evolution 

and learning, but they are not extensive (See [Nolfi99] for a 

survey of applications of learning in evolutionary robotics). It 

is worth mentioning that the way learning is usually used in 

evolutionary robotics context is somewhat different from what 

is meant in the reinforcement learning framework [Sutton98]. 

In the evolutionary robotics literature, learning mostly refers 

to neural network weight adaptation in an unsupervised (e.g. 

Hebbian rule) or supervised manner. The goal of learning in 

the evolutionary robotics literature is thus not usually 

explicitly formulated as maximizing some function of received 

rewards as in reinforcement learning. In our approach, we 

explicitly try to a maximize reward function, so our learning 

aspect is more similar to the mainstream reinforcement 

learning. 

Although it would seem that defining a suitable reward 

signal is not always straightforward, successful applications of 



reinforcement learning suggest that we may benefit from 

explicitly formulating the lifetime goal of an agent as 

maximizing a function of reward (e.g. the average or 

discounted sum of reward) and defining the fitness of the 

agent accordingly. As a similar view, [Whiteson06] used a 

neural network as a function approximator for reinforcement 

learning. However, instead of adapting a single neural 

network, they evolved a population of networks and adjusted 

their parameters using reinforcement learning. Their idea was 

that evolution would find a set of neural networks that let the 

agent learn better. In this paper, we propose a design 

methodology that benefits from both learning and evolution 

paradigms in addition to a culture-based knowledge sharing 

mechanism to develop behavior-based architectures. The 

feasibility of the proposed approach in its preliminary form is 

shown in [Farahmand06].  

C. Reinforcement Learning 

Our structure learning method is formulated as a 

reinforcement learning (RL) problem. In the following 

paragraphs, we briefly introduce reinforcement learning 

without going into details. Interested readers can refer to 

[Bertsekas96] and [Sutton98]. 

Reinforcement learning is a mathematical framework for 

sequential decision-making problems. The goal is deciding the 

optimal set of actions when an agent is situated in a stochastic 

dynamical environment. We describe this framework by 

giving an example. Suppose we want to design a humanoid 

robot playing soccer. The robot has some sensors, like a 

camera and a microphone, to observe the environment. We 

define its objective as playing soccer and scoring goals on the 

opponent; and we seek a policy that leads to this aim.  

Reinforcement Learning Framework: This problem 

can be stated in a reinforcement learning framework. The 

robot is the agent, and the soccer field is its environment. The 

agent perceives the state 

! 

s
t
" S  of the environment at time 

! 

t  

(the position of all players, the position of the ball, commands 

or requests from coach, etc.) and selects action 

! 

a
t
" A  that is 

the robot’s movement command. This action is selected 

according to the policy 

! 

" : S# A of the agent. The policy is 

a function that decides which action should be selected and 

executed at any state. 

The environment has stochastic dynamics that depend on 

the current state and the executed action. In our example, the 

dynamics are the way a given action (e.g. go forward) changes 

the position of the robot on the soccer field. These dynamics 

are generally probabilistic because of noise and other 

unknown effects and can be described as the state-action 

transition model 

! 

P(s
t+1 | st ,at ) . This model describes the 

probability of going to state 

! 

s
t+1

 if the agent chooses action 

! 

a
t
 in state 

! 

s
t
. 

Meanwhile, the agent receives reward 

! 

r
t
 showing the 

merit of the action it was executing in that state. For instance, 

if the agent scores a goal, it will receive a positive reward +1, 

and if it scores an own goal, it will receive a negative reward -

1, etc. We can state our desiderata as a reward (or 

reinforcement) function that generally depends on the current 

state 

! 

s
t
, the executed action 

! 

a
t
, and the next state 

! 

s
t+1

, i.e. 

! 

r(s
t
,a

t
,s
t+1) . Note that in general the reward can be delayed 

and the agent does not immediately receive it after executing 

an action. For example, the decision to move toward the 

opponent’s penalty area does not yield reward immediately; 

the reward is only given much later if the agent scores a goal. 

The goal of reinforcement learning is to find a policy 

! 

"  

that maximizes a function of the received rewards. This 

function, named the value function 

! 

V , should be defined 

based on our needs. For instance, we can try to maximize the 

expected average reward during a finite period of time or we 

may prefer to maximize the expected discounted sum of 

rewards whenever rewards in the near future are more 

important than rewards in the distant future (a stock market is 

an example of this kind of problems where the value of a 

money decreases over time). A reinforcement learning agent 

gradually improves its policy by interacting with the 

environment and getting 

! 

(s
t
,a

t
,r
t
,s
t+1)  samples. 

The important property of the reinforcement learning 

framework, which makes it different from dynamic 

programming, is that it does not assume the dynamics of the 

environment 

! 

P(s
t+1 | st ,at )  and the reward function 

! 

r(s
t
,a

t
,s
t+1)  a priori. Because of this, one can say that 

reinforcement learning is a sample-based version of dynamic 

programming. 

In this paper, we estimate the value of a structure 

(instead of the value of a state) by interacting with the 

environment, and try to find the structure that maximizes that 

value. Here, the structure acts like the policy. 

Hierarchical Reinforcement Learning: Because our 

structure learning method applies to hierarchical architectures, 

we review several works in the hierarchical RL literature. 

There exist several RL methods for hierarchical architectures 

such as Feudal RL [Dayan93], Options [Sutton99], MaxQ 

value decomposition [Dietterich00], Hierarchies of Abstract 

Machines (HAM) [Parr98], and a policy-gradient approach to 

hierarchical RL [Ghavamzadeh03]. However, there are some 

important differences between our approach and more 

common methods for hierarchical RL. First of all, our 

architecture has a behavior-based nature. Each component of 

our architecture is a complete behavior, which is produced by 

the evolutionary mechanism. It decides on its own without 

getting any command from a central coordinator or from other 

behavior modules. Each behavior module is thus a direct map 

from the perception space to the action space. The distributed 

nature of the architecture enables the agent to work properly 

even if a few of its behavior modules become faulty. This is 

not common in most hierarchical RL methods, such as Feudal 

RL, MaxQ, and HAM, where there is usually some central or 

higher-level coordinator. The other important difference 

between our approach and traditional hierarchical RL methods 

is that our learning method tries to find an optimal or 

suboptimal structure (hierarchy), whereas other hierarchical 

RL methods are not directly concerned with hierarchy, but 

learn each component’s optimal or suboptimal mapping. In 



our approach, a cooperative co-evolutionary process adapts 

the behavior modules. See [Barto03] for a survey of 

hierarchical RL methods. 

 

III.  THE MAIN IDEA 

Our approach to the hierarchical behavior-based system design 

decomposes the problem into two sub-problems and benefits 

from learning, cooperative co-evolution, and culture-based 

methods to solve those sub-problems. Our first sub-problem is 

developing a suitable set of behavior modules, and the second 

one is organizing those behavior modules in the architecture.  

 The suggested approach for solving this problem has 

three main components: (1) behavior cooperative co-evolution 

that solves the behavior development problem, (2) 

reinforcement learning for structure learning that finds the 

organization of behavior modules during the agent’s lifetime, 

and (3) a culture-based memetic algorithm that accelerates the 

structure learning method and enhances lifetime performance 

of the agents (Fig. 1 shows the relationships between the 

cooperative co-evolutionary mechanism, the learning agent, 

and the culture).  

One may ask the reason for selecting the evolutionary 

mechanism for designing behavior modules and reinforcement 

learning for organizing them, since other combinations are 

also possible. Our choice is based on the special form of 

hierarchical behavior-based architecture that we deal with in 

this paper. The main reasons for this choice are (1) the larger 

space of behavior modules compared to the space of structures 

in our architecture, and (2) the effects of a small change to the 

behavior modules/structure on the overall behavior of the 

agent. The practical consequence of this difference is that if 

one tries to considerably change the overall behavior of the 

agent and to adapt it to new conditions of the environment, it 

is easier to change the structure of the agent than its behavior 

modules. This may be helpful in cases when behavior modules 

have not been well-adapted to the current environment and we 

need a new, acceptable (but not necessarily optimal) solution 

to our problem quickly. Also, evolutionary methods are 

usually more effective in finding good solutions for high-

dimensional optimization problems than local search methods. 

Therefore, in this research, we chose to evolve behavior 

modules (which has a larger search space) and to learn the 

structure of the agent (See [Farahmand05A] and 

[Farahmand05B] for examples of using learning for adaptation 

of both behavior and structure). 

 We discuss the main components of the proposed 

methods in the following.  

A. Cooperative Co-evolution of Behaviors 

To solve the problem of developing a suitable set of behavior 

modules, we use a cooperative co-evolutionary mechanism. 

The proposed cooperative co-evolutionary method evolves 

behavior modules, which are the basic components of the 

behavior-based agent’s architecture. 

 In our cooperative co-evolutionary method, we have 

several different behavior (genetic) pools in each of which a 

specific type of behavior modules evolves. Individuals in these 

behavior pools encode instances of behavior modules (notice 

behavior pools in Fig. 1). The agent is composed of several 

behavior modules where each of them comes from a separate 

population. This type of encoding is sometimes called 

phenotypic co-evolution (as opposed to genotypic co-

evolution described in [Krawiec07]). 

 The representation of individuals and the genetic 

operators depends on the problem and the designer; e.g. one 

may choose a neural network to describe the behavior 

modules, so the designer encodes the topology/weights of 

neural networks in a specific way, and defines crossover and 

mutation operators accordingly.  

 As an example of this cooperative co-evolutionary 

method, consider generating “obstacle avoidance” and “light 

seeking” behavior modules for a mobile robot. We need two 

behavior pools. In one pool, we evolve behavior modules that 

receive sonar readings and output the movement direction of 

the robot (obstacle avoidance) and in the other pool we evolve 

behavior modules that receive the input from vision sensors 

and output the motor command (light seeking). 

 The goal of the behavior co-evolution is to evolve 

several behavior modules such that if they are put together in 

the architecture, the agent’s fitness (which depends on its 

performance in the environment) will be high. To achieve this 

goal, behavior modules should be cooperatively evolved in a 

way that their fittest solution is close to the optimum solution 

for the agent as a whole. This is not a trivial task, and we later 

discuss Uniform and Value-based Fitness Sharing 

Mechanisms for forcing this desideratum in Section V.B.1. 

 Our cooperative co-evolutionary mechanism, as 

described in Section V.B., is similar to what is known as 

cooperative co-evolutionary algorithms in the evolutionary 

computation literature (See [Potter00] and [Wiegand04]). In 

cooperative co-evolutionary algorithms, each population 

evolves a sub-component of the solution separately. Those 

sub-components are evaluated together and the sub-

component’s fitness is assigned based on this performance 

measure. In our agent development framework, those sub-

components are behavior modules, and Uniform and Value-

based Fitness Sharing Mechanism are two ways to assign 

fitness to sub-components. 

B. Individual Learning 

Now, suppose we have an appropriate set of behavior 

modules. An important question is how to organize these 

modules in the agent’s hierarchical architecture. This problem 

has a combinatorial optimization nature. Some combinations 

of behavior modules lead to acceptable performance and some 

do not. For instance, suppose we have two behavior modules: 

“wandering” and “obstacle avoidance”. Furthur assume that 

the architecture is multi-layer and the higher layers can 

suppress the lower layers whenever the higher behavior 

modules become activated (we will precisely define our 

architecture and the meaning of “activation” in Section IV). If 



the “wandering” module is higher than the “obstacle 

avoidance” module, the agent always executes the 

“wandering” behavior and never executes the “obstacle 

avoidance”. This specific organization of behavior modules 

likely leads to crashing into obstacles. On the other hand, if 

the “obstacle avoidance” behavior module has a higher 

priority than the “wandering” behavior module, the agent 

would wander in the world and avoid obstacles when they are 

confronted. 

 The goal of the individual learning component of our 

agent design methodology is finding an appropriate ordering 

of behavior modules, i.e. the agent’s structure. The proposed 

structure learning method is based on reinforcement learning 

principles. It seeks the organization of behavior modules that 

maximizes the received reinforcement signal. 

The interplay of learning and evolution is important in 

our framework. Learning has a multi-level effect on the agent 

and its society. It adapts the agent to the current environment. 

This is especially helpful whenever the environment changes 

faster than what evolution can track. Moreover, learning can 

indirectly influence the genetic material of a species through 

the Baldwin effect (as opposed to the Lamarckian viewpoint 

which says that learned traits can directly be inherited). An 

individual that learns can find a local optimum even if the 

phenotype induced by the genotype was not close to the 

optimum. This effect increases its chance of survival. 

However, learning takes precious lifetime of the individual. 

This generates a selection pressure toward individuals that 

have the correct phenotype from birth - without any need for 

learning (See [Hinton87] for a computational model on the 

effects of learning and evolution, and [Nolfi99] for a survey of 

the mutual effect of learning and evolution). 

C. Culture-based Memetic Knowledge Sharing  

Learning not only changes the fitness landscape, but also 

affects the culture of the society the agent is living in. This 

culture can, in return, have an effect on learning, too. Culture, 

as we interpret it, is a medium for sharing experiences and 

solutions to previously encountered problems. Each individual 

may use this common knowledge as its initial knowledge and 

then refine this knowledge for its own special needs. The 

individual may share this new solution with other members of 

society through social interactions and incrementally change 

the culture.  

 If we assume the problems that individuals face are more 

or less similar, and also assume that they have similar tools 

and means for solving them, we can conclude that agents can 

benefit from previously experienced ways of success or failure 

by sharing this learned knowledge through the described 

cultural mechanism. 

The latter description of knowledge transfer in the 

society bears resemblance to the meme metaphor. A meme is 

“a unit of information that reproduces itself as people 

exchange ideas” [Dawkins76]. Memetic algorithms 

[Moscato92], which are considered a hybridization of local 

and global search in the evolutionary computation community, 

are a promising meme-inspired approach for solving difficult 

optimization problems efficiently ([Radcliffe94], [Merz99], 

[Merz00], [Buriol04], [Krasnogor04], [Ong04], and [Zou04] 

are a few examples of traditional memetic algorithms. See also 

[Moscato03], [Krasnogor05], and [Smith07] for reviews of 

memetic algorithms). The idea of this interpretation of 

memetic algorithms is that local search can guide us to a local 

optimum quickly while global search methods, such as those 

common in evolutionary algorithms, increase the chance of 

finding a very good or even optimal global solution. 

Nevertheless, the idea of a meme can be interpreted and 

implemented in other ways rather than as a simple local search 

before/after a genetic operator - as is common in the 

evolutionary computation community (See [Federici03] for a 

sample of other interpretations of memes). For instance, here, 

we consider a meme as the tradition or the cultural belief for 

solving a problem common to many agents in the society. 

Those beliefs act as good a priori knowledge for solving a 

common problem, while the individual fine tunes that 

knowledge for its special needs. The individual can transfer 

this knowledge back to the culture or the meme pool - as we 

call it in this paper. In summary, in this interpretation, memes 

act as a priori knowledge for the learning process. We use this 

interpretation of memes alongside the traditional one in this 

paper. 

IV.  MATHEMATICAL MODEL OF THE 

AGENT  

Our behavior-based architecture consists of a set of behavior 

modules parallel to each other with different priorities, see 

Fig. 2. Behavior modules that are placed higher in the 

structure have priority over lower modules. As an example of 

this architecture, consider our designer’s mobile robot with 

three behavior modules “wandering”, “light seeking”, and 

“obstacle avoidance”. The agent with this set of behavior 

modules observes the combined state 

! 

s of its environment and 

itself and proposes action 

! 

a . The agent’s state changes 

according to the dynamics of the environment, and it receives 

a reinforcement signal 

! 

r . 

Suppose we have a set of 

! 

n  behavior modules 

! 

B
i

{ };i =1,...,n , defined as the following map between state 

and action (See Fig. 3): 

 

! 

B
i
: " S 

i
# " A 

i
       i =1,...,n

" A 
i
= A

i
$ No Action{ },  " S 

i
= " s 

i
" s 
i
= P

i
(s);%s& S

i{ }
S

i
' S,  A

i
' A,  P

i
: S # " S 

i

(1) 

where 

! 

S  is the state space (which consists of the inputs from 

sensors and possibly the internal memory of the agent), 

! 

S
i
 is 

the subset of the state space observable by behavior module 

! 

B
i
 (

! 

Si" S j #$, in general), 

! 

A  is the set all possible actions, 

and 

! 

A
i
 is the set of 

! 

B
i
’s output actions, i.e. actuators. 

! 

P
i
 is the 

mapping that projects the agent’s state 

! 

S  to the behavior 

! 

B
i
’s 

perception. As the formulation indicates, all behaviors’ inputs 

are not necessarily the same. This is reasonable since in real-

world problems different behavior modules observe the world 



differently. For instance, “obstacle avoidance” uses sonar 

sensors as its input, and “light-seeking” behavior module just 

uses the output of light-sensitive sensors.  

 In our architecture, each behavior module 

! 

B
i
’s action 

space is augmented with “No Action” (NA). NA is a virtual 

action that even if selected does not change actuators. The role 

of NA is allowing behavior modules not to activate in some 

regions of their excitation space. If NA is selected 

appropriately, it would enable the agent to achieve higher 

performance. To see why, suppose the agent has no NA. If we 

add NA, it can achieve the same performance level by simply 

ignoring the newly added NA actions. However, it is possible 

that for some states, the agent chooses a NA and gains more 

reward by letting lower behavior modules take control. If the 

algorithm can find the global optimum, the performance of the 

agent with NA would be certainly equal or greater than the one 

without. Nevertheless, there is a trade-off between extra 

flexibility coming from this additional virtual action and the 

difficulty coming from the slightly enlarged search space (the 

increase in the search space would be negligible if the size of 

! 

A
i
 is already large). 

In order to see how a behavior module works, suppose 

the world state is 

! 

s" S . Each behavior module 

! 

B
i
 senses 

! 

S  

through 

! 

P
i
-projected subspace 

! 

" S 
i
. If 

! 

s
i
" S

i
 (or 

! 

" s 
i
# " S 

i
 in 

the behavior’s internal representation), behavior 

! 

B
i
 will be 

excited. Behavior module 

! 

B
i
 will be activated and output 

! 

a
i
 

if 

! 

a
i
= B

i
(P

i
(s

i
)) = B

i
( " s 

i
) # NA . Behavior module

! 

B
i
 does 

nothing if it is not excited or it is excited but selects 

! 

a
i
= NA. 

It is the job of the designer to specify these excitation 

subspaces –which is equivalent to the design of sensory 

system for a controller. However, the agent itself will “figure 

out” when to become activated through a co-evolutionary 

mechanism. 

As a clarifying example, suppose our mobile robot is in 

the middle of a large room with a lamp in a corner. The robot 

has eight sonars and there are four light-sensitive sensors; so a 

12-dimensional vector describes the state of the system 

! 

s = sonar
1"8 light

1"4[ ]
T

. In this situation, two of the 

robot’s light sensors turn on because they observe the lamp. 

Also, sonar sensors report a large number because no object is 

close to them. The “Obstacle avoidance” behavior module 

only uses sonars information to decide. Therefore, it just 

observes the first eight dimensions of the state space (i.e. 

! 

P
obstacle

:"12 #"8
). It also becomes excited whenever any 

of the sonars report a distance closer than some threshold, say 

two meters. The light-seeking module observes the last four 

dimensions of the state vector and becomes excited if any of 

those values is non-zero. In the aforementioned situation (the 

robot in the middle of the room), the “obstacle avoidance” 

behavior module does not become excited because it is far 

from any objects. However, the “light-seeking” module 

becomes excited since two of its dimensions are non-zero. 

Depending on the behavior module, it may suggest a real 

“action” (such as a “move forward”) or NA. Here, suppose the 

“light-seeking” module suggests an action that leads the robot 

toward the light. After a while, our robot gets close to a wall. 

Now, the sonar readings are showing distances smaller than 

two meters. In this situation, the “obstacle avoidance” module 

becomes excited in addition to the “light-seeking” module. 

The agent cannot simultaneously execute the suggested 

action of all behavior modules, and thus a conflict arises. 

Deciding which action should control the agent depends on the 

agent’s architecture. 

In this paper, we consider a special but important case of 

the Subsumption Architecture and call it the Purely Parallel 

Subsumption Architecture (PPSSA), see Fig. 2. PPSSA is a 

hierarchical behavior-based architecture in which all behavior 

modules are parallel to each other. In PPSSA, a higher 

behavior module has the priority to suppress the lower ones. 

Suppressing means that the higher activated behavior does not 

let the lower activated (and suppressed) behaviors put their 

actions on the actuator’s bus and control the agent. In this 

situation, no matter what the actions of lower behaviors are, 

the agent is controlled by the action of suppressing behavior. 

Whenever a behavior module becomes activated and suggests 

some action and is not suppressed by any other behavior, that 

behavior module becomes the controlling behavior of the 

agent. 

To formalize our architecture, assume that we have a set 

of 

! 

n  behavior modules 

! 

B
i

{ } and an 

! 

m -behavior architecture 

! 

T  consisting of 

! 

m  of those behaviors (

! 

m " n).  The set 

! 

B
i

{ } 

shows what behavior modules are available in the architecture. 

The vector 

! 

T  describes the organization of behaviors in the 

architecture. The element 

! 

T(i) denotes the behavior module in 

the 

! 

i
th

 layer of 

! 

T  where the numbering starts from the lowest 

layer, e.g. 

! 

T(1)  is the index for the lowest behavior in the 

architecture. We can define the architecture by knowing 

! 

B
i

{ } 

and 

! 

T  as follows: 

 

! 

T = [Bind (1) Bind (2) ... Bind (m )]
T     m " n

ind(i): j   (that indicates B j  is in the ith  layer)
. (2) 

As an example, our mobile robot’s controller is described by 

the set of behavior modules 

! 

Avoid obstacle, Light Seeking, Wandering{ }  and the structure 

! 

T = wandering light seeking obstacle avoidance[ ]
T . This 

structure shows that the highest behavior in the architecture is 

“obstacle avoidance” and the lowest one is “wandering”. The 

goal of this paper is to learn this structure and to co-evolve 

those behavior modules automatically. 

V.  PROPOSED METHOD 

In this section, we describe our hybrid behavior-based system 

design framework in detail. Consider that we want to develop 

a behavior-based agent. We need to find a suitable behavior 

module repertoire 

! 

B
i

{ } and an appropriate organization of 

them in the architecture 

! 

T  such that our objectives are met. 

We define our objectives as a function of the reinforcement 

signal that the agent receives. Having 

! 

r
t
 as the reinforcement 

signal received at time 

! 

t  (which may depend on the system’s 



state, selected action, etc.) and defining 

! 

R as a random 

variable that indicates the episode’s return for the agent, the 

value of the whole system with structure 

! 

T  and set of 

behavior modules 

! 

B
i

{ } 

! 

(i =1,...,n)  is 

 

! 

V
T

= E
"

1

N
r
t

t=1

N

#
the agent with structure T

 and set of behaviors B
i{ }(i =1,...,n)
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"
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the agent with structure T 

and set of behaviors B
i{ }(i =1,...,n)
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% 
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& 

' 

( 
) 
) 

. (3) 

in which expectation is taken over all possible trajectories of 

the agent during its lifetime. If the task is continual, the state 

distribution may become stationary and this expectation will 

be with respect to the induced state distribution. The 

probability distribution of trajectories (or the stationary 

distribution) depends on the state transition probability of the 

environment (

! 

P(s
t+1 | st ,at )) and the policy 

! 

"  of the agent. 

The policy of the agent is a function of the state space to the 

action space. For PPSSA, it depends on the behaviors 

! 

B
i

{ } 

and their organization 

! 

T  in the way described in Section IV. 

We may omit the explicit dependence of the value function on 

the agent’s policy in the rest of the paper to simplify our 

notation. 

The design goal is finding a set of behaviors and the 

structure that maximize the value of the agent. This can be 

formalized as 

 

! 

B
*
i{ },T*{ } = argmax

B
i{ },T

V
T

. (4) 

where 

! 

T
*
 is the optimal structure and 

! 

B
i

*{ }  is the set of 

optimal behaviors. Note that the result of optimization 

problem depends on the way we define the space of behaviors. 

For example, the result would be different depending on 

whether we define it as a set of look-up tables or linear 

function approximators.  

As equation (4) shows, there are two different parameter 

sets for the optimization task that are dependent on each other: 

parameters that describe each behavior module and parameters 

that describe the organization of behavior modules in the 

architecture. One may take different approaches to solve this 

optimization problem: evolving behavior/evolving structure 

separately or together, learning behavior modules and 

evolving structure, evolving behavior modules and learning 

structure, or learning both behavior modules and the 

architecture. 

If we want a modular system with re-usable behaviors, 

we should not change behavior modules very fast. If we do so, 

we need to develop a new set of behavior modules for every 

new situation the agent may face. Instead, we can re-organize 

behavior modules in the structure in order to change the 

overall behavior of the agent whenever it faces change in the 

environment or the goal. 

In the structure learning, we assume having a behavior 

module repertoire 

! 

B
i

{ } and our goal is choosing an ordered 

sequence 

! 

T  with 

! 

m  out of 

! 

n  behaviors that maximizes (3):  

 

! 

T
*

= argmax
T

V
T

. (5) 

On the other hand, the behavior co-evolution problem 

considers adjusting each behavior 

! 

B
i
’s mapping from its own 

state space (

! 

" S 
i
) to the augmented action space (

! 

" A 
i
) using 

evolutionary process. In other words, a behavior module must 

choose an appropriate action 

! 

a
i

*
 in each 

! 

" s 
i
 that maximizes its 

fitness in 

! 

T
*
.  

To develop a behavior-based agent, we co-evolve a set of 

behavior modules in their own genetic (behavior) pools. Each 

pool has its own genetic properties and in general, different 

behavior modules have different genotypes. The algorithm 

randomly selects a behavior module from each pool to make a 

set of behaviors 

! 

B
i

{ } and gives it to the agent (Fig. 1). By 

interacting with the environment and receiving a 

reinforcement signal, the agent tries to find an ordering of 

behavior modules that maximizes the received reward. This 

means that the agent tries to find the best possible architecture 

for the given set of behaviors. Thereafter, the agent is assigned 

a fitness based on its performance. The fitness is based on 

some weighted average of the agent’s received reinforcement 

signal during its lifetime. Noting that we need to evolve 

behavior modules to increase the agent’s fitness, we need a 

mechanism to relate the fitness of the agent to the fitness of 

behavior modules –this is called credit assignment in multi-

agent learning literature [Harati07]. This mechanism must 

force the cooperation between behavior pools so that the agent 

can maximize its fitness. We discuss this mechanism in 

Section V.B.1. 

The aforementioned optimization procedure is similar to 

the traditional notion of memetic algorithms as there is a local 

search stage during evolution. Despite this similarity, the 

learning is not directly performed in the space of behavior 

modules, but instead it is done in the space of structures that 

uses those genetically inherited behavior modules as its 

components. In our approach, the search space for evolution is 

not the same as the search space for learning, though they are 

coupled through the agent’s performance in the environment. 

After the agent’s lifetime, it returns the best learned 

structure to the culture of its society (meme pool). Based on 

the agent’s fitness (which depends on both the learned 

structure and the set of available behavior modules), the meme 

would survive in the culture or diminish. This meme pool acts 

as a guide to newborn agents. A “baby” agent receives one of 

those memes from the meme pool as its initial structure. This 

initial knowledge helps the agent to perform better from its 

early stages of life. 

We should emphasize that two different meme-like 

concepts are used in our framework: 

• Local search after evolution (structure learning) 

• A culturally-induced a priori knowledge based on 

the best surviving structures  



 

Pseudo-code of the proposed approach is outlined in Fig. 

4. Details of each component of the method are described in 

the next subsections.  

A.  Structure Learning 

In this subsection, we propose a method for structure 

learning. Our aim is finding 

! 

T
*
 that satisfies (5) assuming that 

we have 

! 

B
i

{ } (a set of behavior modules given to the agent 

by the designer or developed by the co-evolutionary 

mechanism). To solve this problem, we need to find solutions 

to the following sub-problems: 

Representation: How should the agent represent 

knowledge gathered during learning? 

Hierarchical Credit Assignment: How should the agent 

assign credit to different behavior modules and layers in its 

architecture? 

Knowledge Updating: How should the agent update its 

knowledge when it receives reinforcement signal? 

 

The agent must have a data structure where its lifetime 

experiences can be stored in a meaningful and compact way. 

This representation is used to infer the correct organization of 

behavior modules. An appropriate representation must be 

capable of defining a large class of possible combinations of 

structures, have a small representation space and, use 

information gathered during learning wisely. The other 

important issue is determining the responsibility of behavior 

modules for the received reinforcement signal and assigning 

appropriate credit to them, i.e. the hierarchical credit 

assignment problem. A good choice of representation 

facilitates this task. The last issue is the way we should update 

the knowledge representation using clues from the credit 

assigner. 

We solve these problems constructively starting from 

defining an appropriate representation named the Zero-Order 

representation. Thereafter, we show how to decompose the 

whole system’s value function 

! 

V
T

 (3) into simpler 

components that can be estimated online. This decomposition 

allows us to take advantage of the system’s architecture to 

assign credit to its components and to update values 

effectively. 

A.1) Zero-Order Representation 

In this representation, we store the expected value of 

each behavior module in each layer. In other words, the merit 

of being in a layer for each behavior module is stored. We 

write the value of the structure 

! 

T  as 
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(6) 

where 

! 

E
"

1

N
r
t# | L

i
 is controlling

$ 

% & 
' 

( ) 
 is the expected reward 

following the agent’s policy when the 

! 

i
th

 layer takes control 

and 

! 

P(L
i
 is controlling) is the probability of a layer 

! 

L
i
 being 

the controlling one. Note that this decomposition is possible 

because different time instances 

! 

t "L
i
 is controlling" in timestep  t{ } are mutually exclusive. 

Here, we assume that at least one of the behavior modules is 

active at every moment, so we can write the third equality. 

Defining 

! 

VZO (i, j)  -Zero-Order value- as  

 

! 

VZO (i, j) =Vij = E
"

1

N
rt#
B j  is the controlling

 behavior in the ithlayer

$ 
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& 
& 

' 

( 
) 
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we have 

! 

E
"

[
1

N
rt# | Li is controlling]

= P B j | Li{ }E
"

1

N
rt# B j  is the controlling behavior in Li

$ 

% & 
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( ) 
j=1

n

#

=  P B j | Li{ }Vij

j=1

n

#     i =1,...,m

   (8) 

where 

! 

P B j | Li{ } is the probability that 

! 

B j
 is the controlling 

behavior whenever 

! 

L
i
 is the controlling layer. Altogether, 

! 

V
T

 

can be written as 

 

! 

VT = P B j | Li{ }VijP Li is controlling( )
j=1

n

"
i=1

m

" .  (9) 

The cardinality of the representation space is  

 

 

! 

cardinality(ZO) = n "m . (10) 

which is much smaller than the cardinality of a representation 

that stores all possible behavior combinations.  

 Equation (9) relates the value of the agent to the 

organization of behavior modules in its structure. Therefore, 

we can estimate the value of a structure by evaluating this 

summation provided that we know all terms used in the 

summation. In order to find the optimal structure, we should 

find the structure that satisfies (5). To do so, we must have an 

estimate of 

! 

Vij
, 

! 

P L
i
 is controlling( ) , and 

! 

P B j | Li{ }.  



According to the definition of 

! 

Vij
 (7), credit assignment 

is straightforward: 

! 

Vij
 must be updated whenever 

! 

B j
 is the 

controlling behavior module in the 

! 

i
th

 layer. Therefore, if 

layer 

! 

i  is the controlling layer and 

! 

B j
 has been activated in it 

while the system receives the reinforcement signal 

! 

r
k
, 

! 

Vij
 

must be updated similar to what is common in reinforcement 

learning: 

 

! 

Vijk+1
= 1"#k,ij( )Vijk

+#k,ij rk

 
whenever B j  is the controlling

behavior in the ith  layer

$ 

% 
& 

' 

( 
) 

 (11) 

with 

! 

0 <"k,ij #1. Based on the value of 

! 

"k,ij , we put more 

or less emphasis on the old experiences. 

Estimation of 

! 

P L
i
 is controlling( )  and 

! 

P B j | Li{ } is 

not difficult and one can set a counter for these variables and 

increase them accordingly. However, there is another elegant 

method to estimate all of them at once. Instead of updating 

components of (9) separately, it is possible to estimate all of 

them together by defining 

! 

˜ V ij  as 

 

! 

˜ V ij = P B j | Li{ }VijP Li is controlling( ) .  (12) 

 Therefore, we have 

 

! 

˜ V ijn+1
= 1"#n,ij( ) ˜ V n,ij

+#n,ij

"B j  is active at time step n"$

"Li is controlling at time step n"$

rn
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' 

( 

) 
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* 

  (13) 

with 

! 

0 <"n,ij #1.  

Hence, it is now possible to find the arrangement of 

behavior modules that satisfies (5) and maximizes reward. 

Different methods can solve the combinatorial optimization 

problem of finding 

! 

T
*
. In our implementations, we have used 

simple stochastic search. That is, calculating values for many 

different randomly chosen structures and selecting the one 

with the highest value. 

There is another way to represent the value of structure. 

Similar to what we did in this subsection, one can develop a 

structure learning method based on the First Order 

representation [Farahmand05A]. In that representation, we 

store the value of the relative ordering of behavior modules in 

the structure (as opposed to the value of a behavior module 

being in a specific layer of the structure in the Zero-Order 

representation). Nevertheless, the current representation is 

sufficient for our agent design task and we do not use the First 

Order representation in this paper.  

One final note about the structure learning method is 

worth mentioning. When we want to find an architecture that 

maximizes (9), we need to have estimates of 

! 

Vij
, 

! 

P L
i
 is controlling( ) , and 

! 

P B j | Li{ }. These estimates, 

however, depend on the current structure of the agent, and 

therefore, may not be an accurate and unbiased estimate for 

any arbitrary structure. The result would be that we are 

actually solving an approximate version of the original 

optimization problem. This problem has resemblance to off-

policy policy evaluation in the conventional reinforcement 

learning framework, which is not easy in general. Most likely, 

the estimated error would be very small whenever we are 

evaluating the same structure that the agent uses for decision-

making (this case is like on-policy evaluation as in SARSA 

[Sutton98]). This error would be larger for structures that lead 

to totally different selection patterns of behavior modules. An 

analysis precisely showing this effect is not presented in this 

paper and the mathematical description of the convergence 

behavior of the provided structure learning algorithm remains 

an open problem. However, by randomly selecting structures 

during the agent’s lifetime, we can help the agent find the 

optimal structure. In practice, the behavior of the structure 

learning in our experiments was satisfactory. Thorough 

experimental evaluation of the structure learning is provided 

in [Farahmand05A]. 

B. Cooperative Behavior Co-evolution 

In this section, we discuss different aspects of our cooperative 

co-evolutionary behavior development scheme. In Section 

V.B.1, we present the general framework of cooperative co-

evolutionary mechanism. In Section V.B.2, we give a specific 

example of behavior representation that we will use in our 

experiments, and show how genetic operators are defined in 

this case. We should note that one might define different kinds 

of behavior module representations (e.g. neural networks) and 

various types of genetic operators based on the specific 

problem with which one is dealing. 

B.1. Behavior Pools and Fitness Sharing Mechanisms 

In contrast to most evolutionary approaches in the 

evolutionary robotics community, we do not use a single 

population of monolithic behavior modules (or controllers). 

We discriminate behavior modules by their supposed role and 

make them evolve in their own genetic (behavior) pools. In 

this framework, all behavior pools evolve cooperatively to 

increase the fitness of agents. Fitness of each behavior pool 

directly or indirectly depends on the fitness of the agent. The 

relation between these two values is determined by 

Uniform/Value-based Fitness sharing mechanisms. 

The designer determines the supposed role of each 

behavior module by specifying the input and output spaces of 

each behavior module. For instance, when one wants to have 

an “obstacle avoidance” behavior for the mobile robot, one 

may believe that the proximity sensors provide an appropriate 

type of input for this task. As mentioned before, it is possible 

that the final “overall behavior” of the agent and the way this 

specific behavior module contributes to it may be completely 

different from what was had expected. 



Each genetic pool consists of many individuals. The 

“type” of behavior modules between different pools is not the 

same, but all individuals in each of those pools describe the 

same type of behavior modules. For instance, in one pool we 

have individuals for “obstacle avoidance” behavior and in 

another pool, we have different individuals evolving to 

produce “wall following” behavior. The evolution process for 

each pool has no direct interaction with other populations. 

Therefore, to have a set of 

! 

n  different possible behaviors, it is 

necessary to make a set of 

! 

n  different genetic pools with a 

separate evolutionary process in each of them (Fig. 2).  

We need a mechanism to encourage cooperation between 

behavior modules in the direction of increasing the fitness of 

the agent. The mechanism we use to cooperatively co-evolve 

behavior modules is inspired by the Enforced Sub-Population 

(ESP) [Gomez97] algorithm, and is similar to what are 

commonly known as cooperative co-evolutionary algorithms 

([Potter00] and [Wiegand04]). Cooperative co-evolutionary 

algorithms must be differentiated from competitive co-

evolutionary algorithms where populations explicitly compete 

with each other, e.g. predator and prey scenarios [Rosin97]. 

First, a random behavior module is selected from each 

population to make a behavior set 

! 

B
i

{ }. The agent uses this 

set to interact with the environment. The learning procedure 

organizes those behavior modules in the architecture 

according to the received reinforcement signal (See Section 

V.A). It is evident that the performance (i.e. fitness) of the 

agent depends on the correctness of its behavior modules. By 

“correct”, we mean that each of those behavior modules 

performs such that by appropriately arranging them in the 

architecture, the agent can do something useful. If all behavior 

modules are correct, the agent will find a suitable organization 

and perform well. On the other hand, if some behavior 

modules act incorrectly and output misleadingly, the fitness of 

the agent will degrade.  

Nevertheless, the exact contribution of each behavior 

module is not known a priori because the agent’s fitness 

(which we can measure directly) is the result of the complex 

interaction between all the behavior modules and the structure 

with the environment. In this paper, we propose two 

mechanisms for estimating the contribution of each selected 

behavior module based on the fitness of the agent itself: 

uniform fitness sharing and value-based fitness sharing. 

 

Uniform Fitness Sharing: As the performance of the 

agent is highly coupled with the performance of each of its 

behavior modules, we may estimate the fitness of that 

behavior module as the average fitness of all agents in which 

that specific behavior module contributes. Thus, if a single 

instance of a type of behavior module takes part in the 

architecture of several agents, say 10, the fitness of that 

behavior module is defined as the average fitness of those 10 

agents. More precisely, if we define the fitness of an agent 

with behavior set 

! 

B{ } as  

 

! 

V
B{ }

Last K episodes
= f{B} Last K episodes

=

E
1

K
rt

t"Last K episode

#
the agent with  B{ },  

t " Last K episode

$ 

% 
& 
& 

' 

( 
) 
) 

,  (14) 

each behavior module’s fitness 

! 

f
u
Bi

j( )  according to the 

uniform fitness sharing mechanism is (

! 

u  in 

! 

f
u
 is for 

Uniform) 

 

! 

f
u
Bi

j( ) =
1

N
V

B{ }
i Last k episodes

B{ }
i

j

"   (15) 

where 

! 

Bi

j
 is the 

! 

j
th  individual from the 

! 

i
th

 population and 

! 

B{ }
i

j
s are 

! 

N  uniform randomly chosen sets of behavior 

modules in which 

! 

Bi

j
" B{ }

i

j
. Behavior modules 

! 

B{ }
i

j
 are 

chosen randomly, so it is possible for a specific behavior 

module to be selected more often than others. However, by 

having enough trials, we become sure that each behavior 

module has been involved in a sufficient number of trials and 

that the estimated fitness is a good measure of performance. 

Note that, like ESP, in our uniform fitness-sharing scheme, we 

share fitness to its components according to the overall fitness 

of the agent (in our case, the components are behavior 

modules, and in ESP they are neurons).  

 

Value-based Fitness Sharing: The uniform fitness 

sharing mechanism does not differentiate between different 

behavior modules in the architecture when assigning fitness to 

the behavior modules. Instead, it considers the fitness of the 

whole system and then estimates the fitness of each behavior 

module by averaging over the fitness of several agents. 

However, if we have some reliable information about the 

contribution of each behavior module to the agent’s 

performance, we might have a better estimate of each behavior 

module’s fitness. Fortunately, this kind of information is 

readily available in our structure learning framework. 

Considering the way we have defined the Zero-Order 

representation, we can express the contribution of each 

behavior module in the architecture as: 

 

! 

VT (Bi ) = P Bi | Lq{ }VqiP Lq  is controlling( )
q=1

m

" = ˜ V qi

q=1

m

" . (16) 

This equation summarizes the contribution of a specific 

behavior module 

! 

B
i
 in all layers of the architecture based on 

its conditional value, probability of becoming the controlling 

behavior module, and the probability of a layer becoming 

controlling. Given that a behavior module may behave 

differently in different architectures due to the effect of other 

behavior modules, it is wise to average over several agents 

with different architectures and sets of behavior modules 

! 

B{ }
i

j
. In other words, 

 



! 

f
v
Bi

j( ) =
1

N
VT (Bi )

B{ }
i

j

"  (17) 

with the same definition of notation and parameters as (15) (

! 

v  

in 

! 

f
v
 is for the Value-based fitness sharing).  

These performance measures are flexible. The designer 

can change them in order to accommodate one’s needs. For 

instance, one may change 

! 

K  in (14) to include all episodes, so 

the measure would be the indicator of lifetime performance, or 

one can change it to include only the last few episodes and it 

would be the indicator of the ultimate performance of the 

agent. The same is true for the value-based fitness sharing 

mechanism by changing the way 

! 

˜ V ij  is updated. If we use 

! 

"n,ij =1 n  in (13), it would be an estimate of the average 

performance of that behavior module in the architecture. 

Moreover, it is possible that fitness estimation follows a 

different updating rule from what the learning and structure 

selection is based on. 

Although our cooperative co-evolutionary method is 

similar to usually practiced cooperative co-evolutionary 

algorithms ([Potter00] and [Wiegand04]), there are a few 

differences. First, we evaluate the fitness of all sub-

components of the solution (i.e. behavior modules of the 

agent) simultaneously, as opposed to evaluating the fitness of 

a sub-component while fixing other populations. This 

simultaneous evaluation and co-evolution is crucial for tasks 

where experience is expensive. The other important difference 

is the way we assign fitness to those sub-components. The 

uniform fitness sharing mechanism assigns the fitness of the 

whole solution (i.e. agent’s fitness) to sub-components (and 

can be considered more similar to the usual practice of 

cooperative co-evolutionary methods), while the value-based 

fitness sharing mechanism tries to extract the contribution of 

each sub-component in a more elegant way. 

B.2. Genetic Operators 

Genetic operators should be designed in a compatible 

way with the internal representation of each behavior module. 

In this work, we use a look-up table representation for each 

behavior module and define appropriate genetic operators. 

Nevertheless, our approach is not limited to this special look-

up table representation of behavior modules or suggested 

genetic operators, and other representations and/or genetic 

operators can be used too. 

Behavior module 

! 

B
i
 (and also 

! 

Bi

j
 which is an instance 

from that family) is defined as (See (1)) 

 

! 

B
i
( " s ) : " S 

i
# " A 

i
. (18) 

  

The input space (perception/internal memory) and output 

space (action) dimensions and the number of partitions of each 

dimension determine the size of this table in our 

representation. These dimensions are determined by the 

designer. 

The function 

! 

B
i
(s
1
,s
2
,...) can take integer values 

between 0 to 

! 

A
i

. Whenever it takes zero (i.e. 

! 

B
i
(s
1
,s
2
,...) = 0  for some 

! 

(s
1
,s
2
,...)" S

i

'
), the output of that 

behavior module at that point of input space is NA; the output 

is the usual action of the behavior module whenever 

! 

B
i
(s
1
,s
2
,...) " 0 . As an illustrating example, suppose we have 

a behavior module that has a two-dimensional input space and 

can output two different actions alongside NA. Assume that 

one dimension of the input space can take two values and the 

other takes three. A typical instance of this class of behavior 

modules is: 

 

! 

B
1

=
1 0 2

0 0 1

" 

# 
$ 

% 

& 
'   

We use two different mutation operators for this specific 

representation: hard and soft. Hard mutation, which is selected 

with probability 

! 

pmhard
, replaces a behavior module’s matrix 

with a totally new random one. Soft mutation perturbs each 

matrix and changes some of its elements in order to search 

nearby points in the solution space. This change is in the form 

of randomly assigning a new action to some random position 

of the matrix with probability 

! 

pmsoft
. For instance, in our 

example it can be done by changing the value of position (2,3) 

of 

! 

B
1
 from ‘1’ to ‘0’. The result is the following behavior 

module: 

 

! 

B
2

=
1 0 2

0 0 0

" 

# 
$ 

% 

& 
'  

The crossover operator is defined as 

 

! 

Bi

" j 
new

= XBi

j
old

+ X Bi

k
old

 (19) 

where 

! 

X  is a random binary matrix with an appropriate 

dimension, 

! 

X  is its binary complement, and 

! 

Bi

j
old

 and 

! 

B
i

k
old

 

are two behavior modules selected by the selection mechanism 

based on their fitness. The elements of matrix 

! 

X  are coming 

from a Bernoulli distribution with probability 

! 

pc , i.e. 

! 

P Xij...l =1( ) = pc . This crossover operator generates offspring 

that inherit some elements from both parents. 

To show the effect of the crossover operator, take 

behavior module 

! 

B
3
: 

 

! 

B
3

=
0 2 0

2 0 1

" 

# 
$ 

% 

& 
'  

The crossover operator first selects a matrix 

! 

X . The 

elements of 

! 

X  are selected randomly with a probability of 

! 

pc  

of being 1. Therefore, if 

! 

pc  is 0.5, we may get a matrix 

! 

X : 

 

! 

X =
0 0 1

0 1 1

" 

# 
$ 

% 

& 
'  

and the result of the crossover operator between 

! 

B
1
 and 

! 

B
3
 

would then be: 

 



! 

B
new

= XB
1
+ X B

3

=
0 0 1

0 1 1

" 

# 
$ 

% 

& 
' (
1 0 2

0 0 1

" 

# 
$ 

% 

& 
' +

1 1 0

1 0 0

" 

# 
$ 

% 

& 
' (
0 2 0

2 0 1

" 

# 
$ 

% 

& 
' 

=
0 2 2

2 0 1

" 

# 
$ 

% 

& 
' 

. 

 The crossover operator can be symmetric in the sense 

that it produces two offspring using the same formula but with 

! 

X  for the first child and 

! 

X  for the second one, or it can be 

asymmetric with just one child from both parents. 

 It is notable that there is no substantial difference 

between our proposed genetic operators and those that are 

usually used in genetic algorithms. The conventional operators 

usually work on string representation of chromosomes, but 

ours operate on matrix representation. For instance, it is easy 

to see that the crossover operator is quite similar to the 

conventional uniform crossover. 

C. Memetic Algorithm 

In this section, we propose a culture-based method for sharing 

learned knowledge between agents based on a new 

interpretation of the memes metaphor. Here, we consider a 

meme as a possibly useful piece of knowledge about the 

structure of the agent. This knowledge is the result of learning 

process of all agents in the society. Based on how well they 

have learned the structure, that knowledge is the optimal or 

close to the optimal structures. We store these memes in a 

place shared by all agents. This place is called culture. In the 

experiment section, we see that our memetic algorithm can 

improve lifetime performance of agents.  

As stated in the Section III.C, memes can be interpreted 

and implemented in different ways. The common 

interpretation of a meme in the evolutionary computation 

community is a local search before/after applying genetic 

operators in an evolutionary algorithm (e.g. [Krasnogor05]). 

This approach is similar to our hybrid learning/co-evolution 

method that was described in Section V.B. Nevertheless, the 

idea of a meme “as a unit of information that reproduces itself 

as people exchange ideas” [Dawkins76] may be interpreted 

and implemented in other ways too. 

In our new interpretation, we consider a society of 

evolving behavior modules and corresponding agents (as 

discussed in Section V.B). We give a set of behavior modules 

to an agent and let it start a life. During its lifetime, the agent 

learns how to organize those behavior modules in its 

architecture. The final learned structure is usually the optimal 

or close to the optimal solution for that set of behavior 

modules. Instead of throwing away this learned structure, we 

can store it in a commonly shared place called culture. Other 

agents pick their initial structure from this set of possibly 

useful solutions, and then start fine-tuning that structure by the 

usual learning procedure (Section V.A). This initial 

knowledge may potentially accelerate the learning process by 

giving the agent a good initial guess about the possible 

optimal structure. 

A priori knowledge provided by the culture can be 

helpful if all the agents use almost the same sets of behavior 

modules. This is not an unrealistic assumption as all the agents 

try to find a solution to the same problem. Nevertheless, we 

should point out that if the solution space is multi-modal and 

the population is diversified around distant optima, a good 

structure for a specific set of behavior modules might no 

longer be a good guess for another set of behavior modules, 

and reusing a previously helpful structure might not be very 

helpful anymore. 

To be more precise, consider a set of agents 

! 

agenti{ } . 

Each agent in our architecture is defined by two sets of 

components: behavior modules and structure, i.e. 

! 

agenti : Bi{ },Ti( ) . During the agent’s lifetime, the agent 

tries to find a structure that maximizes its received reward (5). 

After the agent’s lifetime, the result of learning is an ordered 

pair 

! 

B
i

{ },T
i

*( )  in which 

! 

T
i

*
 is the optimal (or close to the 

optimal) structure.  

We define the culture as a meme pool 

! 

M  where several 

different learned structures (memes) 

! 

T
i

*
s for different agents’ 

experiences are stored. Not all memes of a culture are the 

same. Some of them lead to fitter agents (by giving them a 

better initial knowledge) and some do not. We desire that fitter 

memes, which are more likely to be better initial guesses for 

our agents, have a greater chance to dominate the culture. 

Those memes should be more stable and be selected more 

often as the initial structure of the agents. Therefore, we 

associate a measure of fitness 

! 

fTi  to each meme 

! 

T
i
. In 

summary, our meme pool is defined as the following set: 

 

! 

M : Ti
*
, f

Ti
*( ){ } (20) 

 A meme’s fitness 

! 

fTi  is defined as the fitness of the 

agent with the final structure 

! 

T
i
 (14). To calculate

! 

fTi , we 

may average over all the agents that have the same resulting 

structure over different trials and generations: 

 

! 

fTi =
1

N
f Ai( )

Ai : Bi{ },Ti( )
"  (21) 

in which 

! 

N  is the number of agents with the structure 

! 

T
i
. 

Adding a forgetting factor helps us deal with the intrinsic non-

stationary nature of the evolutionary approach and/or the 

environment: 

 

! 

fTi n+1

= 1"#Ti( ) fTi n +#Ti
f A( )         A : Bi{ },Ti( )  (22) 

The meme pool has a limited size – the cultural diversity 

is finite. If it has enough capacity, adding newly generated 

memes is trivial. If the result of the learning is already in the 

meme pool, its fitness is updated according to (22). Finally, if 

there is a new meme with a high fitness, it replaces the least fit 

meme, i.e. a meme 

! 

T
i
 with the lowest 

! 

fTi  in 

! 

M . 

Metaphorically, this is somewhat similar to human culture 



where old and unsuccessful traditions are gradually replaced 

by new and successful ones. Moreover, as time passes, the 

prominence of a tradition changes gradually according to its 

usefulness to the current condition of the society. 

If the meme pool 

! 

M  is not empty, the newborn agent 

acquires a meme according to the fitness 

! 

fTi  of each meme. 

Otherwise, the agent picks a randomly chosen structure. In this 

paper, we have implemented a proportional scaled fitness 

selection mechanism as our meme selector, i.e. scaled roulette 

wheel selection mechanism. The agent starts interacting with 

the environment with the selected meme as its initial structure. 

If the agent receives reward, the hypothesis that this structure 

is suitable strengthens. If it receives punishment, the agent 

changes the structure using our proposed structure learning 

method (Section V.A.). Also the agent explores its structure 

space by occasionally selecting randomly chosen structures. In 

this way, the chance of getting trapped in a local optimum of 

the structure space decreases. 

The culture-based meme transferring mechanism 

conveys the learning experience of a generation to the next 

one. This may induce some unwanted bias. Nevertheless, our 

approach has several stochastic elements that help with 

escaping from local minima. One element is the randomness 

in the structure learning procedure that we have just described, 

and the other is randomness in the genetic operators. These 

reduce the chance of undesirable effects of the culture-based 

approach. 

 To summarize, in our behavior-based system design 

framework the agent uses three sources of adaptation for its 

development process. The first is a cooperative co-

evolutionary mechanism in which agents’ behavior modules 

are evolved in different genetic pools. Genes compete with 

each other according to the fitness of the resulting agents. In 

the second mechanism, the culture acts as initial knowledge to 

the newborn individuals by providing memes. The meme is 

the result of the agent’s ancestors’ experiences. The third 

mechanism is the structure learning process. This process 

adapts each individual structure in the direction of maximizing 

the agent’s performance given a set of inherited behavior 

modules. The agent starts its search from a point that its 

culture suggests. 

VI. EXPERIMENTS 

To show the effectiveness of our methods, we apply them to 

two benchmark problems. One of them is a carefully designed 

general abstract problem and the other is a simulation of a 

real-world multi-robot object-lifting task that has been solved 

and tested empirically using a hand-designed SSA [Nili01]. 

The abstract problem is used to show the effectiveness of the 

proposed methods in a controlled, and well-defined situation, 

while application of our methods in the object-lifting task 

shows their power in real-world and complex situations. In 

both problems, we compare the performance of behavior co-

evolution/fixed structure with behavior co-evolution/structure 

learning. Whenever we use structure learning, we compare the 

performance when (1) there is a meme-induced initial 

knowledge and when (2) the agent starts from a random initial 

structure. Also we examine the effect of our two proposed 

fitness sharing mechanism on the performance of the agent. 

Before discussing the results, it should be mentioned that we 

have not optimized parameters of the learning and 

evolutionary methods (e.g. learning rate, exploration rates, 

population size, etc.); therefore, even better results are 

possible. 

A. Abstract Problem 

The goal of the abstract problem is to show the ability of the 

agent to learn an optimal policy by interacting with a general 

random environment. The abstract problem is specified by a 

random finite state/finite action “desirable” policy 

! 

a
*

="(s)  

in which 

! 

s" 1,2,...,m{ }# 1,2,...,n{ }  and 

! 

a
*
" 1,2,...,q{ } . This desirable policy is essentially a 

randomly generated integer matrix. 

 The goal of the agent is to find a policy 

! 

" agent
 that has 

the minimum distance to 

! 

"(s)  by interacting with the 

environment. Since the agent’s policy depends on the evolved 

behavior modules and learned structure, this problem can be 

thought of as finding the right structure and set of behavior 

modules by structure learning/behavior co-evolution processes 

to estimate an integer-valued matrix. 

A.1. Performance Measure and Reinforcement Signal 

 The distance in the action space is defined as 

 

! 

"(s) #$ (s) =
0        if "(s) = $ (s)

1       otherwise

% 
& 
' 

 (23) 

and the total distance over all the state space is 

 

! 

"#$ = "(s) #$ (s)
s%S

& . (24)  

A normalized measure of distance between the learned 

policy and the optimal solution can be defined as  

 

! 

P(error) =
1

S
"#$  (25) 

which is a good indicator of the system’s performance 

whenever the probability distribution of visiting states in the 

problem space is uniform. Note that the agent does not know 

the optimal policy and must learn it, i.e. it cannot calculate 

(25). 

The agent starts with a randomly chosen architecture 

! 

T  

in which behavior modules are selected from a behavior 

module repertoire. The repertoire consists of behavior 

modules selected from corresponding behavior (genetic) 

pools. The agent confronts with a random state 

! 

s and 

responds with action 

! 

a  based on the behaviors’ organization 

and each behavior module’s policy 

! 

B
i
(s

i
) . If the agent 

chooses the correct action compared to the optimal solution 

! 

"(s) , it receives +1 reward and otherwise it receives a -1 

punishment: 



 

! 

r(s) =
+1        if "(s) =  # agent

(s)

$1        otherwise

% 
& 
' 

 (26) 

where 

! 

" agent
(s)  is the selected action of the agent 

considering all behavior modules and the organization of them 

in the architecture. Each such interaction defines an episode in 

the abstract problem. The goal of structure learning problem is 

finding an agent that minimizes (25). This problem is 

equivalent to maximizing the average received reward. 

Therefore, we define the agent’s fitness as the average of the 

reinforcement signal received during several interactions with 

the environment. 

A.2. Experiment Setup 

In our experiments, we have chosen a 5x5 problem space 

with seven actions. This means that the optimum solution is an 

element of a space with size 

! 

7
25
("10

21
) . We define seven 

behavior modules 

! 

B
i
 (i =1,...,7)  each of them excites 

everywhere in the problem space. Each behavior module 

! 

B
i
’s 

output is selected from the set of 

! 

a
i
,NA{ }  (i.e. behavior 

module 

! 

B
i
 can only selects either a NA or 

! 

a
i
). It is evident 

that to find 

! 

" , each behavior module must evolve and find 

the correct mapping 

! 

B
i
( " s ) : " S 

i
# " A 

i
 which selects 

! 

a
i
 

whenever 

! 

"(s) = a
i
. Note that it is not always necessary for 

behavior module 

! 

B
i
 to select NA in cases that 

! 

"(s) # a
i
. For 

instance, if 

! 

B j  is in an upper layer of 

! 

B
i
 and 

! 

"(s) = a j , no 

matter what 

! 

B
i
( " s )  is, the agent outputs correctly if 

! 

B j  

become the controlling behavior. Note also that the search 

space of our behavior module decomposition is much smaller 

than the original space (order of 

! 

2
25
("10

8
)  for each 

behavior module). 

As all behavior modules have the same input space and 

all of them can become activated in all states of that space, 

there exists a mapping 

! 

B
i
( " s ) : " S 

i
# " A 

i
 for each combination 

of behavior modules 

! 

T  that solves the problem optimally. In 

other words, the correct mapping can ultimately be found 

using a proper evolutionary mechanism regardless of the 

organization of those behavior modules - if all necessary 

behavior modules are in the architecture. However, this 

mapping depends on the organization of behavior modules and 

if the structure frequently changes, the performance of the 

agent would degrade. Therefore, a good way to solve the co-

evolutionary problem in this experiment is fixing the structure 

and evolving behavior modules. Note that the method is not 

aware of this special property of the abstract problem. 

In our simulations, we have seven behavior pools for our 

behavior modules 

! 

B
i

{ }; i =1,...,7. Each behavior module 

! 

B
i
 has a 25-dimensional input space. The population size of 

each behavior pool is 30. In order to estimate the fitness of any 

individual in each behavior pool, we pick a bunch of behaviors 

from all behavior pools according to their fitness, and then 

evaluate the agent’s fitness. We do this procedure 300 times in 

each generation. Having these agents’ fitness, we estimate 

behavior modules’ fitness using equations (15) or (17) for the 

uniform fitness sharing mechanism and valued-based fitness 

sharing mechanism, respectively. To evaluate each agent’s 

fitness, we let it interact with the environment. Here 

interaction means that a random state from the optimal policy 

matrix is given to the agent, and depending on its guess, the 

agent will receive a reward +1 or punishment -1. The agent 

has a lifespan of 100 episodes. During those episodes, it learns 

the correct structure using the proposed structure learning 

method in the experiments where the structure learning is 

present, or it just evaluates the performance of the current 

behavior modules set. In cases that we use our memetic 

algorithm, we set the culture size (the cardinality of 

! 

M ) to 5. 

Results reported in this experiment are the aggregation of 

three runs. Other details of the experiment are shown in Table 

1. 

A.3. Experiment Results 

Uniform vs. Value-based Fitness Sharing Mechanism: 

Our first result is depicted in Fig. 5. It compares the 

performance of uniform and value-based fitness sharing 

mechanism. The reported performance measures are the 

average fitness of the population and the fitness of the best 

individual in the population. The optimal solution, which 

selects the correct answer every time, and the random solution, 

in which all behavior modules 

! 

B
i
 select randomly between 

action 

! 

a
i
 and NA with the same probability, are also shown. 

In this figure, we do not use a meme as an initial knowledge of 

the structure and all structures are selected randomly at the 

beginning of the agent’s lifetime. Note that all results of this 

paper report the fitness of the agent and not the fitness of 

behavior modules. This makes comparison between different 

fitness sharing mechanism meaningful. 

It is seen that the evolutionary method that uses the 

value-based fitness sharing performs better than the one that 

uses the uniform fitness sharing. The best solution of the 

value-based method reaches close to the optimal solution. The 

average fitness of the random behavior architecture is much 

lower than others and is close to the performance of the first 

generation of evolving systems. 

The fitness of the random case can be calculated in two 

ways: analytical and numerical. In the numerical method, we 

simulate an architecture with random behavior modules and 

structure several times. The result shown in the figure is 

obtained in this way. The average fitness can also be 

calculated analytically. If we define random behavior module 

as a behavior 

! 

B
i
 which selects NA and 

! 

a
i
 with the same 

probability:  

 

! 

P(a
i
= B

i
(s)) = P(NA = B

i
(s))  "s# S  (27) 

the expectation of the received reinforcement signal is 
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E
"
random

r[ ] =
1

m

1

2
i
# (1) + 1$
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i
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 (28) 

where 

! 

m  is the number of layers (behavior modules). The 

first term in the parentheses (including 

! 

1
m

) shows the 

average received reward from the 

! 

i
th

 layer. Now, consider the 
th
i  layer. In order to have the correct response, its higher 

behaviors must choose NA (each with probability of 

! 

1
2) and 

the 

! 

i
th

 layer must select 

! 

a
i
 (with probability of 

! 

1
2). The 

second term in the parentheses shows the amount of 

punishment signal received by each layer. This average fitness 

is -0.7165 for 7-layer architecture. 

Superiority of the Value-based Fitness Sharing 

Mechanism: The reason for the superiority of the value-based 

fitness sharing method to the uniform counterpart in this 

problem is the ability of the former method in extracting more 

useful knowledge from the agent’s experiments. In this 

problem, 

! 

V
T (B

i
)
 (16) estimates the contribution of each 

behavior module in the overall performance of the agent 

precisely. The uniform fitness sharing neglects this knowledge 

by assigning the same fitness to all behavior modules.  

This is possible because the agent’s fitness is the 

summation of each behavior module’s contribution to the 

fitness (which is captured by the value-based fitness sharing 

mechanism). In this specific problem, any increase or decrease 

in the behavior module’s fitness has direct effect to the agent’s 

fitness. In other words, if the fitness of a behavior module, as 

defined in (17), were increased/decreased, the fitness of agents 

that have this behavior in their architecture would 

increase/decrease in average (14). In this problem, it is not 

possible that the increase in the fitness of a behavior module 

! 

B
i
 decreases the fitness of another behavior 

! 

B j , i.e. they do 

not compete with each other. This property is not common in 

all problems, so this superiority of the value-based method 

may not be seen in all the cases. We see that our object-lifting 

problem is an example of such a problem (Section VI.B). 

The question of which of these two fitness sharing 

mechanism works better depends on the problem and the way 

behavior modules are designed. If they do not usually compete 

with each other for resources (i.e. they become excited in 

different regions of state space or their output space are 

separate), we can expect that the value-based fitness sharing 

mechanism perform better. On the other extreme that they 

always compete with each other, the uniform fitness sharing 

mechanism may perform better. 

Learning and Co-evolution (Uniform) - Meme vs. no 

Meme: We perform a series of experiments to investigate the 

effect of hybridisation of learning and co-evolution. In Fig. 6, 

we compare the performance of fixing the structure (hand-

designed structure), learning the structure, and learning the 

structure with the help of our memetic algorithm when 

behaviors are co-evolved using the uniform fitness sharing 

mechanism. It is important to note that the fixed structure case 

needs designer’s prior knowledge about a good solution of the 

behavior organization problem. Therefore, the fixed structure 

case and the learning structure cases are not directly 

comparable because they do not use the same amount of a 

priori knowledge. In this paper, we report the result of fixed 

structure case along the learning cases because it shows the 

extent to which the structure learning alone can come close to 

the knowledge the designer might have a priori in some cases.  

Based on Fig. 6, the fixed structure case performs better 

than structure learning methods in early generations but its 

performance is lower after generation ~110. Note that in this 

problem, the correct structure is not unique, but it depends on 

the ordering of behavior modules in the architecture. 

Therefore, fixing a structure confines behavior modules to be 

evolved for that specific configuration and reduces the 

unnecessary (in this case) exploration in the solution space. As 

a result, the fixed structure performs better than the other 

methods in the early stages of evolution. However, after 

decreasing the high amount of diversity in the behavior pools, 

the correct structure for the given set of behavior modules is 

learned. It is also seen that the case that uses meme-induced 

prior knowledge performs better than the case without that 

knowledge in the later generations. This shows that estimating 

the correct structure and starting from the culture in the 

learning process is beneficial for the agent. In addition, it 

shows that the behavior pools have almost converged to 

similar solutions; so sharing the structure knowledge through 

the meme pool can usually help in increasing the agent’s 

fitness. 

In Fig. 7, the histogram of the probability distribution of 

the agents’ overall fitness in several sample generations is 

shown when the uniform fitness sharing is used. This figure 

shows the empirical distribution of fitness among all agents 

that are produced using evolved behavior modules in a 

generation. In other words, if one randomly picked a set of 

behavior modules from genetic pools in a generation, say 

generation number 100, and made an agent with them and let 

the agent learn the correct ordering of behavior modules based 

on the received reinforcement signal, the fitness of the agent 

would follow this distribution. For instance, the probability of 

having a fitness greater than 0.5 is a little less than 0.1 for the 

meme-induced method and a little more than 0.1 for the fixed 

structure. These results are based on the aggregation of agents’ 

fitness in three runs. 

The empirical cumulative probability distribution of the 

agent’s fitness is shown in Fig. 8 (formally, it is 

! 

P(Agent's Fitness "#)). The right-side tendency of these 

diagrams shows the higher chance of having high performing 

evolved/learned agents. It is seen that in the first generation, 

all agents are performing poorly. Those agents that use 

learning are slightly better than those with the fixed structure 

because they can find a structure that gains more from those 

randomly generated behavior modules. In the later 

generations, the diagrams tend to the right-hand side, which 

shows that more capable agents are being produced. In early 

generations (e.g. generation 20), the fixed structure case is 



superior, but after a while all of them become almost the same 

and eventually agents that use structure learning perform 

better (generation 200). As before, meme-induced agents 

outperform all others in the late stages of evolution. The 

reason is that it can benefit from previous experience of other 

agents with similar set of behavior modules. These results are 

based on the aggregation of agents’ fitness in three runs 

Learning and Co-evolution (Value-based) - Meme vs. 

no Meme: A similar comparison for the value-based fitness 

sharing is shown in Fig. 9. It can be seen that the case with a 

fixed structure reaches very close to the optimal solution. 

Those cases that learn the correct structure, and do not benefit 

from designer’s a priori knowledge about the special structure 

of this problem, perform somewhat worse than the fixed case, 

but their performances are still significant. Meme-induced 

agents perform better than those without it. Fig. 10 and Fig. 11 

show the empirical probability distribution and the empirical 

cumulative probability distribution of the agents’ fitness 

during some sample generations respectively. It is seen from 

those figures that the fixed structure case is superior in the 

early generations, but the difference reduces in the latter 

generations. In addition, the performance difference between 

with-meme and without-meme agents is noticeable. 

 Steep plots in Fig. 11, especially in later generations, 

show that the produced agents’ fitness is very close to one. As 

the fitness of “one” corresponds to the global optimal solution 

of the abstract problem, this figure shows that most of the 

produced solutions are very close to the global optimal of the 

problem. 

Summary: In this experiment the value-based fitness 

sharing mechanism estimates the fitness of each behavior 

module precisely. Having such conditions is not common for 

all problems. Also for this problem, we can always find a 

behavior module’s mapping for every ordering of behavior 

modules in the structure. In this case, whenever the structure 

learning method suggests a change in the structure, it would 

disturb co-evolution of behavior modules. Meme transfer 

reduces this disruptive effect of learning by suggesting initial 

structures that had performed better with the current sets of 

evolved behavior modules. This effect is more prominent in 

the later stages of evolution where all behavior modules in a 

single behavior pool are more or less similar. 

B. Multi-Robot Object Lifting 

Although the abstract problem shows the efficiency of our 

proposed methods, it is desirable to tackle a real-world 

problem by our methods and study their performance. We 

chose a cooperative multi-robot object-lifting problem as our 

second test-bed. Hand design of behavior-based controller for 

those robots was very difficult, but it resulted in a very 

successful controller for both simulations and real-world 

experiments [Nili01]. Nili et al. hand-designed the behavior 

modules and structure by exhaustive trial and error on a real-

world setup. In this experiment, we simulate the cooperative 

object-lifting task based on the kinematics of the robots and 

the object as introduced in [Nili01]. Before discussing the 

details of our method, we briefly introduce the problem. For 

more information, see [Nili01]. 

B.1. Introduction to Multi-Robot Object Lifting 

Imagine a situation in which a group of robots must lift a 

bulky and large object (Fig. 12). The object is of such a size 

and shape that none of the robots can grasp it directly. Then, a 

fork lifting mechanism is suitable for handling the object. 

When lifting the object, based on the relative position of each 

robot to the object's centre of gravity, the required force may 

vary from one robot to another, which introduces 

heterogeneity in the robots’ team. Consequently, each 

individual robot must have the ability to do its job under a 

range of external loads. In addition, when the object is tilting, 

each robot must move to prevent sliding at its contact point 

with the object. If some compliance is provided at the end 

effector (in the plane parallel to the object's lower surface) and 

the tilt angle of the object is kept small enough, there is no 

need for the robot to move while lifting the object. Keeping 

the inclination angle of the object within a specified range will 

also prevent collision between the object and the lifting robots. 

To keep the object stable when lifting or moving fast on 

a rough or curved path, the object configuration must be such 

that the Zero Moment Point (ZMP) remains in the closed area 

having the object/robot contact points as its vertices. 

Considering the object's maximum acceleration and possible 

position of its centre of gravity, one can find the object’s angle 

at the point when the ZMP comes to the border of the 

supporting area. If the robots keep the object’s angle in the 

range obtained from the above estimation, the object will be 

stable. Therefore, if the tilt angle of the object is maintained 

within a specified value, then the robots are not required to 

move, the object will not hit the robots, and the system is 

stable. Moreover, it has been assumed that each robot is 

capable of measuring the object's angle in its own coordinate 

system, which can be estimated by each robot.  

In the followings, we denote 

! 

z(k) as the height of the 

robot-object contact point, 

! 

v(k)  as its elevation velocity, and 

! 

"(k) as the object’s tilt angle at time step 

! 

k  (all of these 

quantities can be measured locally, see [Nili01] for details). 

Hand-designed behavior modules and structure, whenever 

they are used, are selected similar to [Nili01] (See Table 2 for 

the description of hand-designed behavior modules). Results 

of this paper are obtained with 

! 

"v =1,

! 

v
max

= 5 , 

! 

zgoal = 3, 

  

! 

"
0

= 5
o
, and 

! 

"T = 0.005  as the simulation time step.  

In summary, the problem is cooperative lifting of an 

unknown object to a set-point while keeping the object’s tilt 

angle small with no central control or communication among 

the robots. We compare cooperative co-evolution of behavior 

modules with a priori known structure and without that 

knowledge (the structure learning case). In the latter case, the 

agent should learn the structure of behavior modules during its 

lifetime. In our experiments, we study the performance of both 

fitness sharing methods (uniform and value-based). Moreover, 

the effect of the proposed memetic algorithm on the 

performance of learning is investigated too.  



B.2. Performance Measure and Reinforcement Signal  

There are two major methods for formulating the optimal 

solution for a learning system. The first one is defining the 

solution directly –as it is done in supervised methods- and the 

second method is coding it in the reinforcement signal. The 

first method is not possible in many practical situations. 

Therefore, indirect formulation of desired properties of the 

solution in the reward function is the only practical way. 

Nevertheless, one of the most important problems in 

reinforcement learning is the problem of reinforcement signal 

design ([Dorigo94], [Dorigo97], and [Ng99]). The problem 

can be quite difficult whenever the task under investigation is 

complex and the agent must satisfy a few objective functions 

together. However, reinforcement signal design is in general 

much simpler than defining the goal state. There is no general 

rule to design an appropriate reinforcement function that 

satisfies the designer’s desiderata; and in most problems it is 

selected by trial and error. We have found that the 

reinforcement signal (29) (in Table 3) satisfies our goals*. This 

reinforcement signal is designed in a way that reflects the 

objectives of our problem, and is similar to the way a designer 

would design the hand-designed controller.  

It is notable that the reinforcement learning community 

generally believes that the reward function is the most robust 

and transferable definition of the task [Ng00]. Therefore, 

spending some time to find a suitable reinforcement signal and 

then letting the agent learn the correct policy seems to be a 

better choice than trying to explicitly design a non-transferable 

policy. 

Explaining the Reinforcement Signal: In order to 

clarify the reinforcement function (29), we discuss its terms. 

Relation (30) rewards reducing tilt angle and punishes a 

movement that increases it. This part of the reinforcement 

signal specifies the goal of keeping the object’s tilt angle 

small. Relation (31) rewards robots being in small tilt angle 

and punishes large tilt angles. Note that it rewards low tilt 

angle in early stages of the episode more than in late stages 

and punishes high angles in the later times more than in the 

beginning in order to enforce quick convergence to a 

satisfactory angle. Relation (32) rewards the robot’s closeness 

to the goal and punishes the robots far distance from the goal 

and relation (33) punishes the robot’s passing the goal. It is 

obvious that these two parts of the reward function force 

satisfying the other goal of our problem which is moving the 

object to a specified height and keeping it there. And at last, 

relation (34) punishes a behavior that makes the robot move 

too fast. 

Fitness and Lifetime Fitness: To evaluate the 

performance of different methods, we compare their obtained 

reinforcement signals. Two different overall fitness measures 

are defined: 1) fitness of the agent in the last few episodes of 

its lifetime and 2) fitness of the agent in all episodes (lifetime 

                                                             
*
 Reinforcement signal applies to the current robot. 

Therefore, values like 

! 

z(k)  and 

! 

v(k)  must be interpreted as 

the value of the position and velocity of the current robot’s 

contact point, respectively. 

fitness). The first measure shows the ultimate performance of 

the agent while the second one shows its performance during 

the whole lifetime. It is desirable that these two measures have 

large values and be close to each other. If the lifetime fitness is 

much smaller than the other, it shows that the agent performs 

badly in its early lifetime, but ultimately the agent learns how 

to organize its behavior modules correctly. 

We described the way each behavior module’s fitness is 

calculated using one of the proposed fitness sharing methods 

in Section V.B.1. In the uniform fitness sharing method, the 

average fitness of the agent in the last few episodes (14) is 

given to all behavior modules (15). In the value-based fitness 

sharing, 

! 

V
T (B

i
)
 (16) is given to behavior 

! 

B
i
 according to (17). 

In computing 

! 

V
T (B

i
)
, we use a weighted average of 

reinforcement signal weighted by discount factor 

! 

"episode

str
 like 

the one we defined in (12). In this way, all episodes have 

effect on the behavior module’s fitness, but the effect of later 

episodes are more important. Note that with our choice of 

! 

"episode

str
, this measure is not exactly the same as the average 

reinforcement signal of the last few episodes but is close to it. 

Nevertheless, the agent’s fitness is calculated as before, i.e. the 

average performance of the agent over the last few episodes. 

B.3. Experiment Setup 

We make five genetic pools, each for a family of 

behavior modules, i.e. {“push more”, “do not go fast”, “stop at 

goal”, “hurry up”, “slow down”}. State and action spaces of 

behavior modules are defined as in Table 4.  

The crossover rate 

! 

pc is fixed in our experiments, but 

mutation rates (

! 

pmhard
 and 

! 

pmsoft

) are decayed during 

evolution. We turn mutation off in the last few generations in 

order to reduce the noise in the fitness values. 

In our experiments, each genetic population has 20 

individuals, and we pick 200 random sets of behavior modules 

in each generation to evaluate the fitness of behavior modules 

(the distribution of this random selection is according to the 

fitness of behavior modules). This means that each instance of 

behavior module is involved in an average of 10 different 

agent architectures. This is the number that is used in 

equations (15) and (17) (though we use the exact number of 

times each behavior instance has been involved and not the 

average number). 

Each learning agent has 25 episodes to find a suitable 

structure. The fitness is defined based on the average of the 

reinforcement signal for the last five episodes. This fitness is 

directly used for the uniform fitness sharing mechanism. For 

the value-based fitness sharing mechanism, we use values that 

are obtained during learning (

! 

V
T (B

i
)) as in (16) to 

approximate the fitness. In the case that the agent does not 

learn the structure (i.e. hand-designed structure), we give 5 

episodes for estimating the fitness of the agent. In this case, 

fitness and lifetime fitness are the same. Note that this is just 

fitness (and not lifetime fitness) that enforces selection 

pressure. 



For our memetic algorithm, we use a small culture size 

of five. Also as a reminder, the results of this experiment are 

the aggregation of fitness during several runs with different 

random seeds. Details of the experiment setup can be found in 

Table 1. 

B.4. Experiment Results 

Our first result on the performance of our methods for 

object-lifting task is depicted in Fig. 13. The figure shows the 

average of the population’s fitness (vertical axis) through 

generations (horizontal axis). Remember that the agent’s 

fitness is the sum of reinforcement signals that it receives in its 

last five episodes. It is notable that in this figure, we do not 

present the best agent of each generation as they are very close 

to the hand-designed cases from the early generations. 

General Comparisons (Co-evolution vs. No Co-

evolution – Uniform vs. Value-based Fitness Sharing 

Mechanism – Learning vs. No Learning): In Fig. 13, we 

compare the performance of the agent that uses (1) hand-

designed behaviors/hand-designed structure, (2) hand-

designed behaviors/learning structure, (3) behavior co-

evolution with the uniform fitness sharing mechanism/learning 

structure, and (4) behavior co-evolution with the value-based 

fitness sharing mechanism/learning structure. We expect that 

if the co-evolutionary mechanism performs well, the fitness 

will increase through generations. 

Let’s emphasize that the hand-designed behaviors and/or 

structures use extra knowledge provided by the designer. This 

knowledge, which is a partial solution of the problem, is not 

usually available. Therefore, directly comparing these cases 

without noting their fundamental difference is not fair. 

Nevertheless, as a reference measure, we provide the result of 

hand-designed behavior module and hand-designed (fixed) 

structure case as a flat line. In this case, nothing is evolved or 

learned. This flat line shows what we would achieve if we rely 

on our human designer. Subjectively, a human observer 

evaluates the performance of this setting as quite compelling 

since it always achieves our goal smoothly. This design is the 

same as the one that has been done for the same task with real-

world robots in [Nili01]. 

Learning vs. Hand-Designed Structure: The other case 

is where we use the set of hand-designed behavior modules, 

but we let the agent learn the structure itself. Here, we do not 

have any evolutionary mechanism, so the result is again 

shown as a flat line. We observe that the average fitness of the 

learning agent (with pre-designed behavior modules) is very 

close to the hand-designed agent. This is interesting because 

even though the agent has less prior knowledge (the 

knowledge of “correct” structure is not given to it), it can 

perform competitively. Note that the results’ variance is higher 

in the structure learning/hand-designed behaviors compared to 

the fixed structure/hand-designed behaviors. The source of the 

extra variance is the learning procedure. The learning 

procedure starts from an initial structure that is most probably 

not the same as the optimum one; so the agent suffers some 

punishments before learning the optimum or close to optimum 

structure. This produces variance in the fitness. Also the 

structure learning does not necessarily find the optimum 

structure by the end of the agent’s lifetime, and this, too, adds 

some extra variance. 

Co-evolution and Learning vs. Human Design: By 

studying behavior of co-evolution/structure learning in Fig. 

13, we observe that even though they use less prior knowledge 

compared to the hand-designed cases, they achieve 

comparable fitness. Indeed, the performance of co-

evolutionary method with the uniform fitness sharing 

mechanism approaches the performance of the hand-designed 

solution very fast. 

Superiority of the Uniform to the Value-based Fitness 

Sharing Mechanism: The other observation is that in contrast 

with the abstract problem, the performance of the uniform 

fitness sharing is better than the value-based one. The reason 

will be clearer if we give an example. 

Suppose at some moment of time, the agent’s structure is 

T = [... PushMore Stop] (“Stop” at the top layer, and “Push 

more” in the second layer). Also assume that by initialization 

or by the process of cooperative co-evolution, these two 

behavior modules are the same as the hand-designed behavior 

modules as defined in Table 2. 

The definition of “Push more” behavior module in Table 

2 implies that it is always activated, so it does not let lower 

layers’ behavior modules become the controlling behavior of 

the agent. In this special structure and behavior modules 

setting, either “Push more” or “Stop” would control the agent 

no matter what other behavior modules there are in the lower 

layers of the agent. The consequence is that the value of all 

behavior modules 

! 
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)  except these two would not change 

during learning. Therefore, value-based fitness sharing 

mechanism would not assign a meaningful fitness to any 

behaviors except these two (See (17)). 

 Whenever the initial tilt angle of the object is not very 

large, these two behavior modules can indeed stabilize the 

object and receive a good amount of rewarding signal (though 

not the maximum possible amount), which leads to rather high 

fitness values for them. Because they are not punished and 

even they are rewarded, they do not try to evolve in such a 

way that other behavior modules find the possibility to 

become activated in this specific structure (e.g. this can be 

done by some changes in “Stop” behavior module). The The 

result is that there would be no selection pressure for all other 

behavior modules, and no teamwork would be encouraged.  

 In summary, the value-based fitness sharing leads to 

somewhat selfish behavior modules. If this selfishness 

produces conflicts among them, it may hurt the agent’s 

performance. In some cases, however, all behavior modules 

can cooperate to solve a problem with little adversarial effect 

on others (the abstract problem is an example of this case). 

The same effect is seen in multi-agent credit assignment with 

AND-Type and OR-Type tasks [Harati07]. 

Uniform Fitness Sharing Mechanism - Meme vs. No 

Meme: Now we study other aspects of our methods in more 

details. In Fig. 14, we study the effect of using/not using 

memes whenever behavior fitness is assigned by the uniform 

fitness sharing mechanism, and we compare the average 



fitness and lifetime fitness of the agent in different situations. 

As before, we depict hand-designed behavior modules 

with/without structure learning for comparison purposes (the 

fitness and lifetime fitness of hand-designed 

behavior/structure is the uppermost solid line; the fitness of 

the hand-designed behavior/learning structure is the second 

uppermost solid line, and its lifetime fitness is the dashed 

line). 

We see in Fig. 14 that in the last five episodes, average 

fitness of all behavior evolution cases is almost the same and 

is close to the hand-designed behaviors/structure case (fitness 

curves are shown in solid lines). This shows that the co-

evolutionary mechanism can actually find good solutions for 

the behavior optimization problem. Also the average 

performance of the cases “with structure learning” is almost 

the same as the average performance of the hand-designed 

structure. This shows that the structure learning can find a 

good solution to behavior organization problem. 

Effect of Meme on Lifetime Fitness: Comparing 

lifetime fitness of different methods, we expect a drop in 

lifetime fitness whenever the agent should learn the structure. 

This is because whenever we are learning, we are exploring 

different structure possibilities (especially in early stages of 

learning), and many of those possibilities may not be so good. 

However, comparing the lifetime fitness of “with meme” with 

“without meme” cases show an interesting phenomenon: the 

meme-induced case performs much better than the case 

without meme (these are shown in dashed lines). In fact, 

having a meme pool prevents wasting useful knowledge 

learned by other agents. Note that in the meme-induced case, 

the designer does not use any a priori knowledge about the 

correct structure of the agent, and the method itself benefits 

from other agents’ previous experiences. 

In Fig. 15, we show the histogram of the empirical 

probability distribution of the agent’s fitness in a few sample 

generations when we co-evolve the behavior modules and use 

(1) hand-designed structure, (2) structure learning without 

meme, and (3) meme-induced structure learning. In this figure, 

we use the uniform fitness sharing mechanism. Note that the 

agent’s fitness may be different from behavior modules’ 

fitness when we use the value-based fitness sharing 

mechanism, but in this case both of them are the same†. 

We see that in the early generations (e.g. Generations 1 

and 5 in Fig. 15) those cases that learn the structure perform a 

bit better than the one with a hand-designed (fixed) structure. 

The reason is that the structure learning method can exploit 

any available information that comes from mere randomness 

(in Generation 1) or diverse behavior modules (in Generation 

5) by re-arranging them in the structure. In later generations, 

however, a hand-designed structure case produces more 

highly-fitted agents compared to the structure learning cases. 

This is intuitive because the hand-designed structure case has 

more prior knowledge about the problem and also it is easier 

                                                             
†
 For more information about this type of figure, refer to 

the explanation of Fig. 7 in the Abstract Problem section 

(Section VI.A.3). 

for the co-evolutionary mechanism to find a suitable behavior 

for a fixed structure. In spite of that, the performance of agents 

with structure learning is comparable to the hand-designed 

structure agents. In Fig. 15, we observe that the meme-induced 

case generates slightly more highly-fitted agents compared to 

the case without using a meme.  

In Fig. 16, the same kind of histogram is shown for the 

agents’ lifetime fitness. The superiority of meme-induced 

cases to the without-meme case is evident: memetic algorithm 

increases the chance of producing high-performing agents 

(lifetime fitness). These results show where our memetic 

algorithm can be most helpful: increasing the lifetime 

performance of the agent which is very important when 

dealing with real systems. 

The empirical cumulative probability distributions of 

agents’ fitness (solid lines) and agents’ lifetime fitness (dashed 

lines) are shown in Fig. 17‡. In the first generation, agents that 

use structure learning tend toward the right-hand side 

compared to the hand-designed structure case (for both fitness 

and lifetime fitness measures). This means that in the first 

generation, agents that learn the structure (both with and 

without meme) perform better than the hand-designed 

structure agents on average. 

Comparing the fitness measure, the hand-designed 

structure gradually outperforms the other two by a slight 

margin. The difference is much larger for the lifetime fitness 

since the lifetime fitness considers all early learning episodes 

where the agent tries to find the correct structure and fails. 

However, this difference is much smaller for the “with meme” 

approach compared to “without meme” case. Also we see that 

the lifetime fitness of meme-induced structure learning agents 

is much better than those without a meme. This, again, 

confirms our intuition that we can benefit from using a 

memetic algorithm to transfer learned knowledge. 

Value-based Fitness Sharing Mechanism - Meme vs. 

No Meme: We do the same kind of comparisons for the value-

based fitness sharing mechanisms in Fig. 18-21. In Fig. 18, we 

show the population average of fitness during generations 

when the value-based fitness sharing mechanism is used. 

Again, we compare the fitness of our evolutionary 

mechanisms with/without meme-induced knowledge with the 

hand-designed behaviors/hand-designed structure, and hand-

designed behaviors/learned structure (without meme). Note 

that in the following figures we report the agent’s fitness and 

not the behavior’s fitness, which is a different measure. 

The average fitness of the value-based fitness sharing 

mechanism is generally smaller than that of the uniform 

fitness sharing mechanism. We discussed this point when we 

explained results shown in Fig. 13. Nevertheless, we see the 

same pattern here: average fitness of meme-induced case, 

especially lifetime fitness, is higher than the case where we do 

not use memes. 

                                                             
‡
 For more information about this type of figure, refer to 

the explanation of Fig. 8 in the Abstract Problem section 

(Section VI.A.3). 



In Fig. 19, the histogram of the empirical probability 

distribution of the agent’s fitness in a few sample generations 

is shown. We do comparisons similar to what we did for Fig. 

15. The same kind of histogram for the lifetime fitness of the 

agent is depicted in Fig. 20. Here, we see similar patterns. The 

performance of the learning agent in early generations is better 

than the performance of a hand-designed structure agent. 

Ultimately, the hand-designed structure agents outperform the 

agents that learn the structure. 

We show the empirical cumulative probably distributions 

of agents’ fitness (solid lines) and agents’ lifetime fitness 

(dashed lines) in Fig. 21. The pattern of results is almost the 

same as in the uniform fitness sharing mechanism case. We 

observe, however, some slight differences too. For instance, 

compare the distribution of fixed structure between Fig. 16 

and Fig. 20. In Fig. 16, we observe an increasing 

concentration of probability toward the high-end of the fitness 

distribution. This means that almost all agents have very high 

fitness values. On the other hand, in Fig. 20, it seems that 

there are two peaks of fitness probability (one close to the 

high-end around 300 and the other around 240). This implies 

that not all agents have the highest achieved fitness, but there 

are two groups of agents with significantly different amount of 

fitness. Similar result can be observed by comparing Fig. 17 

and Fig. 21. The curve for the fixed structure is more or less 

convex in Fig. 17 (especially in later generations), but it is not 

in Fig. 21. This may suggest that the value-based fitness 

sharing mechanism leads to clusters of individuals: one cluster 

with a very high fitness individuals and the other with a 

somewhat lower fitness values. Whether this observation is 

statistically meaningful or not needs further investigation. 

Learning and Fast Adaptation to the Environment‘s 

Changes: In the introductory part of Section III, we explained 

that changing the structure leads to faster adaptation of the 

overall behavior of the agent compared with changing the 

behavior modules. This is very important whenever the agent 

deals with non-stationary environments. Although we have not 

intentionally changed the dynamics of the environment or the 

agent’s goal, we can still observe this property in our results. 

Consider Fig. 17 and/or 21. These figures show the 

cumulative probability distribution of fitness in several sample 

generations. The agent does not have any previous knowledge 

about the environment in the first generation since all behavior 

modules are assigned randomly. This situation is like an 

abrupt change in the environment where the function of 

behavior modules is almost irrelevant to the appropriate 

function for the current environment. If we expect that 

learning the structure is helpful for fast adaptation to a new 

environment, the agent with structure learning should in 

general perform better than an agent without it. In Fig. 17, we 

see that the probability distribution of the case with fixed 

structure (which is the hand-designed structure) has tendency 

toward the lower values of fitness compared to the agent with 

learning. This shows that even where behavior modules are 

completely irrelevant to the current situation (they are 

random), the structure learning can extract some useful 

information by reorganising behavior modules. Similar 

phenomenon is observable in Fig. 21. 

Phenomenal Behavior: Finally, a sample trajectory of 

robot-object contact positions, the object’s tilt angle, and the 

controlling behaviors are depicted with respect to time in Fig. 

22 when Robot 1 is initialized higher than the two other ones. 

The behavior co-evolution with the uniform fitness sharing 

and structure learning with meme-induced initial knowledge 

are used to generate the architecture. In this sample trajectory, 

Robot 2 and Robot 3 execute the “Hurry up” behavior module 

in early steps while Robot 1 selects “Slow down” behavior 

module. However, due to the constraints of that behavior’s 

action space (

! 

" A Slow = max(v(k) #$v,0),NA{ }), the robot-

object contact point’s speed cannot become negative. Thus, 

Robot 1 stands still until the other two move up and the object 

tilt angle is reduced. Afterwards, it selects the “Hurry up” 

behavior module. When the robots reach the goal they execute 

the “Stop” behavior module. 

As discussed in Section II.A, the name of a behavior 

module comes from the designer’s expectation of that module. 

She determines what kind of sensory information goes to it 

and what kind of output actions are available to the behavior 

module. The overall behavior of the agent and the behavior 

module’s contribution to it, however, is not predetermined and 

depends on the complex interaction of the environment, 

learning and co-evolutionary processes, and the initial design 

specifications. 

Cooperative co-evolution and learning change behavior 

modules and the structure to maximize the overall 

performance of the robot. The emergent behavior of the agent 

is not necessarily the same as the designer’s prior expectation. 

For instance, Fig. 22 shows that the “Slow down” behavior 

module (which its input/output spaces are defined in Table 4) 

actually stops “Robot 1” instead of slowing down any robot. 

In this case, the designer had expected that the robot would 

have needed the “Slow down” module when it wanted to 

move downward. Therefore, the design of the “Slow down” 

module was such that it could not produce any upward 

movement. This initial design limitation emerges as a behavior 

module that can stop the robot even when it was not designed 

for. This suggests that associating a “behavior name” to a 

module does not necessarily mean that the module should 

behave in the same way. 

Summary: The results of these experiments show that 

our hybrid co-evolution/learning behavior-based system 

design methods can develop a competitive or even superior 

agent’s “mind” (or controller) in comparison to a human-made 

agent. In addition, our proposed culture-based memetic 

algorithm significantly increases the agent’s lifetime 

performance, which is crucial for online evolution/learning of 

interactive agents. 

VII.  DISCUSSION 

In this section, we summarize the important results and 

discussion scattered throughout the paper. 



 We used two simulated setups to evaluate our proposed 

methods and compared them with each other. We also 

compared our methods to hand-designed or partially guided 

solutions that came from the designer’s knowledge about the 

problem, which is not fully available in general. 

 In the abstract problem, our methods performed very 

well, and the performance was close to the optimal. The 

performance was particularly better for the value-based fitness 

sharing mechanism compared to the uniform fitness sharing 

mechanism. 

 In the abstract problem, the contribution of each behavior 

module to the total fitness of the agent is direct, i.e. increasing 

the fitness of one behavior module increases the fitness of the 

agent. Therefore, the valued-based fitness sharing mechanism 

that assigns the performance of behavior module (and not the 

performance of the agent) as its fitness results in a more 

accurate fitness evaluation compared to the uniform fitness 

sharing mechanism. This is the reason for the superiority of 

the value-based fitness sharing mechanism in this problem. 

Note that this property is not common to all problems, e.g. the 

object-lifting problem. 

 The results for the abstract problem also showed that 

those agents that use learning are slightly better than those 

with a fixed structure. This is especially interesting given that 

for this problem, every structure’s arrangement can lead to an 

optimal solution with an appropriate set of behavior modules. 

This shows that learning can find the most rewarding structure 

based on the set of available suboptimal behavior modules. 

Nevertheless, knowing that any fixed structure is sufficient to 

solve the problem helps behavior cooperative co-evolution in 

the early generations. The reason is that fixing a structure 

produces a selection pressure to specific behaviors’ solutions 

and prevents unnecessary diversity in genetic pools. 

 Finally, the results of the abstract problem indicated that 

better agents could be obtained with meme-induced prior 

knowledge. 

 In the second experiment, we evaluated our methods in a 

robotic task. Hand design of this robotic problem was very 

difficult, but resulted in a very successful controller (see 

[Nili01]). We use this hand-designed controller as our gold 

standard. In this experiment, we used a reinforcement signal 

that reflected our beliefs about the objective of the problem. 

Needless to say, our method was not especially designed for 

this specific problem. 

 The fitness of all behavior module co-evolution and/or 

structure learning methods with/without meme-induced prior 

knowledge was satisfactory and comparable to the human 

designed solution. This suggests that the proposed methods 

could give us good solutions. 

 Our results showed that, in contrast with the abstract 

problem, the uniform fitness sharing was better than the value-

based mechanism. The reason is that, in this problem, 

maximizing each behavior module’s fitness does not 

necessarily lead to the best possible agent, and the value-based 

fitness sharing mechanism may lead to selfish behavior 

modules. 

 In the object-lifting problem, we showed that the final 

fitness (which is calculated based on the last five episodes of 

learning) of all methods is almost the same. However, the 

story was different for the lifetime fitness. The meme-induced 

cases helped to considerably increase the lifetime fitness of 

agents. This phenomenon shows that having a meme pool 

prevents wasting useful knowledge learned by previous 

agents. This effect was more noticeable in the uniform fitness 

sharing method. 

 Finally, we noted that naming a behavior module does 

not necessarily mean that the behavior is precisely performing 

our anticipated behavior.  

VIII.  CONCLUSIONS AND FUTURE WORK 

We proposed a general, hybrid, bio-inspired optimization 

approach for designing modular agents. This approach 

combines the cooperative co-evolution, reinforcement 

learning, and a new interpretation of memetic algorithms. 

Although the main concept of our approach is applicable for 

different kinds of intelligent agent architectures, we 

formulated it for the automatic development of hierarchical 

behavior-based architectures. The co-evolutionary process 

evolves new behavior modules, the structure learning 

organizes them in the agent’s architecture, and the memetic 

algorithm shares learned knowledge among the agents. 

The key idea of our approach is decomposing the 

problem into some potentially easier sub-problems. Instead of 

adapting a complete monolithic controller, we co-evolve sets 

of behavior modules separately and organize them in the 

architecture. Each of these tasks is potentially easier because 

the input space dimension of those modules is much smaller 

than the joint space of all sensors and internal memories of the 

agent. In our modular approach, the designer can use her prior 

knowledge for defining the input (state)/ output (actuator) 

spaces of behavior modules. 

Another possible benefit of our approach is the ability of 

the agent to adapt to changes in the environment. Although we 

have not explicitly changed the environment to study this 

phenomenon, it showed itself during our experiments. In the 

first generation where behavior modules were totally random, 

the learning agent performed better than a fixed design. This 

shows that the learning agent can quickly adapt to the 

environment. If learning was not available, the agent would 

need to wait for at least one or two generations before the 

evolutionary process could increase the fitness of the agent. 

There are many potential research directions that can be 

pursued based on our approach. The most evident step is 

trying it on other interesting and more complex problems. As a 

proof of concept, we have provided two benchmark examples 

in this paper and the results are competitive to human-

designed solutions. Since our approach has not been especially 

designed for these problems, we also expect to get good 

results for other problems. Studying how this approach would 

scale up to other problems would be fruitful. 

Another important research direction is studying the 

current fitness sharing mechanism more thoroughly and 

investigating other possible approaches. The value-based 



fitness sharing mechanism worked well for the abstract 

problem because maximizing the fitness of behavior modules 

was highly correlated to the task of maximizing the agent’s 

fitness. As we discussed in our experiments (Section VI.B.), 

this is not true for all problems. One possible research 

direction is studying these two approaches on other 

benchmarks. A relevant question here is the possibility of 

devising other fitness sharing mechanisms. The uniform 

fitness sharing mechanism does not exploit the special 

architecture of the agent and assigns the same fitness to all 

behavior modules involved in the agent’s architecture. The 

value-based mechanism tries to benefit from the architecture 

and learning experience of the agent to assign the fitness of 

behavior modules. A possible approach to study the fitness 

sharing problem is the Collective Intelligence (COIN) 

framework. COIN addresses the problem of “designing 

collective of computational processes to maximize a provided 

world utility function when each process tries to maximize its 

own payoff utility function” [Wolpert04]. Here, the world 

utility function is similar to the agent’s fitness and those 

computational processes are each of our behavior modules. 

Additionally, tools and approaches like what have been used 

in [Wiegand02], [Ficici05], and [Popovici05] can be helpful 

for better understanding of the effect of fitness evaluation 

methods on the dynamical behavior of our co-evolutionary 

method. Nevertheless, the analysis would be more difficult 

because of the effects of the learning and memetic algorithms. 

Finally, approaches that try to solve relative 

overgeneralization pathology of co-evolutionary methods 

might be helpful for having more efficient co-evolutionary 

mechanism [Panait06]. They change the fitness function by 

biasing it toward optimal collaboration. It is not, however, 

completely clear how one can estimate the fitness of the 

optimal collaborator in our framework. This issue needs 

further investigation. 

Estimating the generalization capability of the agent and 

dealing with noise are two important and relevant issues for 

situated agents. Because a situated learning agent deals with 

different types of uncertainties, including the stochastic nature 

of the environment and the exploratory phase of the learning 

process, any performance measure would be contaminated by 

noise. When we want to select an agent that performs well in 

average, we need to remember that the evaluated fitness is not 

exactly the same as the agent’s expected fitness. More 

precisely, the empirical fitness has deviations from the 

expected fitness. A technique like multiple evaluations of the 

fitness function is considered in this paper (see equations (15) 

and (17)). There are several methods for handling this 

uncertainty in evolutionary optimization [Jin05]. A potential 

research direction is adaptively selecting the number of 

evaluations based on our confidence on the fitness. 

Another important issue is that we want to be sure that if 

our agent performs well at the training phase, it will maintain 

a similar performance in the future. This is the problem of 

generalization and has long been studied in the machine 

learning community and studied in [Chong08] in the 

evolutionary optimization context. They provide a 

probabilistic upper bound on the generalization performance 

of an individual based on its performance on a validation set. 

In our method where we evaluate each behavior module for 
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N  times, the error in the empirical fitness as compared to the 

expected fitness decays with a rate of 
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[Mnih08] for a method called the Bernstein Racing algorithm 

that suggests an evaluation schedule to select the individual 

with the highest expected performance among a pool of 

individuals based on their empirical performance 

Nevertheless, the precise analysis of the effects of learning 

and the randomness in fitness evaluation needs further 

investigation. 

Our new interpretation of memetic algorithm was based 

on the idea that culture is a means to transfer learned 

knowledge from old individuals to new individuals in the 

society. Our mechanism of storing and sharing knowledge was 

simple and minimal. Nevertheless, one may benefit from more 

sophisticated approaches of defining culture and the way it 

interacts with individuals in the society. 

Extending behavior modules that work with real-valued 

state/action spaces is another important research direction. Our 

benchmark problems had discrete state/action spaces. In many 

problems, however, we are dealing with continuous real-

valued sensors and actuators, see [Mobahi07] for detailed 

discussion, and see [Antos07], [Farahmand08A], and 

[Farahmand08B] for some mathematically rigorous 

reinforcement learning-based approaches to deal with 

continuous states/discrete actions problems. In these cases 

where we need to work with continuous states and/or actions, 

we cannot represent the mappings defined by behavior 

modules in an exact form and we need to use function 

approximators. These function approximators can be anything 

from generalized linear models to multi-layer feedforward 

neural networks. Fortunately, using function approximators 

does not considerably change our architecture design 

approach. The only change is the way we need to encode 

behavior modules as genetic material. 

Another possible extension is automating the way state 

and output spaces are determined. In the proposed approach, 

we assume that the state and output spaces of each type of 

behavior modules are given by the designer. She determines 

which sensors and internal memories are relevant features for 

achieving a certain agent’s behavior. Nevertheless, automating 

this feature selection mechanism is a very interesting and 

difficult research direction. One approach for dealing with this 

problem is through an attention control framework 

[Fatemi07]. 

 One issue that needs further investigation is the benefit 

of our special problem decomposition for adapting to abrupt 

changes in the environment. In the monolithic controller 

design, the whole controller should be changed so that the 

agent adapts to the new environment. On the other hand, we 

showed that, in our approach, structure learning finds the most 

rewarding organization of behavior modules even if those 

modules were not specifically designed for the new 



environment. This gives us a hint that this phenomenon can be 

actually true. 

We did not observe any divergence in the structure 

learning. However, an important open question is whether the 

structure learning mechanism converges to the optimal 

structure when using estimation of a behavior module’s values 

in other structures as the initial estimation of its value in a new 

behavior organization, see Section V.A.1. 

We should emphasize that the scope of our approach is 

not limited to PPSSA architecture. One may adopt the concept 

of decomposing the problem and benefiting from co-

evolution/reinforcement learning/memetic algorithm and the 

presented methods to other agent’s architectures. However, the 

modification needs careful attention, as the same mathematical 

formulation, especially the structure learning part, may not 

apply directly in detail anymore. 

The last point is that, we showed how interaction of co-

evolution, individual learning, and culture helps a society of 

agents to improve its average fitness. A theoretical analysis on 

the conditions where these mechanisms would be helpful for 

solving optimization problems is interesting and important. 

Moreover, one may benefit from more accurate models of 

sociological and evolutionary processes for tackling hard 

optimization problems. 
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Figure 1. Building an agent from different behavior pools. 



Figure 2. A typical structure of a Purely Parallel Subsumption Architecture. 
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Figure 3. Excitation subspaces of 
1
B  and 

2
B  in S  and corresponding mapping to 

1
S !  and 

2
S ! . Note that excitation spaces may overlap. 



 
• Initialize n  different behavior pools 

! 

"
i

{ }  for each behavior type 
i
B  

• Initialize an empty culture (meme pool) M  

• While stopping condition are not met 

o Selects n  different behavior modules 
i
B  from each behavior pool to 

make a set of randomly chosen behavior modules { }
i
B  

o If there is any meme in the meme pool M , select a meme M!
0
T  

according to the fitness of each meme 

o Pass { }
i
B  and 

0
T  to the agent 

! Set initial structure as 
0
T  

! Initialize value (e.g.

! 

˜ V ij = 0) and learning parameters 

! For a lifetime do 

• Update learning parameters (e.g. decay 

! 

"k,ij ) 

• Select an architecture 
*
T  that maximizes (9) (Zero-Order 

representation) (If the architecture is fixed, skip this 

step). 

• Using architecture 
*
T , let the agent interact with the 

environment for a while 

• Receive reinforcement signal from the critic (external or 

internal) 

• Update the estimation of necessary values (

! 

˜ V ij{ }  for 

Zero Order structure learning representation (13)) 

! Return fitness (14) and the final structure 
*
T  to the evolutionary 

process 

o Share fitness to behaviors according to the sharing policy (uniform (15) 

or value-based (17) ) 

o Update meme pool using 
*
T  and its fitness (22) 

o For each behavior pool 

! Apply conventional genetic operators to behavior modules in 

order to generate a new population, i.e. Selection, Crossover, and 

Mutation. 

Figure 4. Proposed framework for development of behavior-based systems 



Figure 5. (Abstract Problem) Average and maximum fitness comparison for different fitness sharing methods with 

behavior co-evolution and structure learning: 1) uniform fitness sharing (blue) and 2) value-based fitness sharing 

(black). Solid lines indicate the average fitness of the population and dotted lines show maximum fitness. The 

bottommost line (green) shows the expected fitness of a random behavior and structure (with the same probability of 
selecting action or NA for each behavior) and the uppermost line (red) is the maximum achievable fitness. 



Figure 6. (Abstract Problem) Average and maximum fitness comparison for different design methodologies that use 

uniform fitness sharing: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of behavior 

modules and learning structure benefiting from the meme-induced initial knowledge (black), and 3) co-evolution of 

behavior modules and fixed structure (magenta). Solid lines indicate the average fitness of the population and dotted 
lines show the maximum fitness. Maximum achievable fitness is shown by the uppermost line (red). 



Figure 7. (Abstract Problem) Fitness probability density comparison for uniform fitness sharing. Comparison is made 

among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that learn 
structure from an initial random setting (middle/green), and agents with fixed structure (right/red). 



Figure 8. (Abstract Problem) Probability distribution comparison for uniform fitness sharing (

! 

P Fitness "#{ } ). 

Comparison is made among agents using meme pool as their initial knowledge for their structure learning (black), 

agents that learn structure from a random initial setting (blue), and agents with hand-designed structure (magenta). 

Right-side tendency of distributions indicates higher chance of generating very good agents.  
 



Figure 9. (Abstract Problem) Average and maximum fitness comparison for different design methodologies that use 

value-based fitness sharing: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of 

behavior modules and learning structure benefiting from the meme pool initial knowledge (black), and 3) co-evolution 

of behavior modules and fixed structure (magenta). Solid lines indicate the average fitness of the population and dotted 

lines show the maximum fitness. Maximum achievable fitness is shown by the uppermost red line. 
 



Figure 10. (Abstract Problem) Fitness probability density comparison for value-based fitness sharing. Comparison is 

made among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that 

learn structure from an initial random setting (middle/green), and agents with fixed structure (right/red). 
 



Figure 11. (Abstract Problem) Probability distribution comparison for value-based fitness sharing 

(

! 

P Fitness "#{ } ). Comparison is made among agents using meme pool as their initial knowledge for their structure 

learning (black), agents that learn structure from a random initial setting (blue), and agents with hand-designed 

structure (magenta). Right-side tendency of distributions indicates higher chance of generating very good agents.  
 

 



 

Figure 12. A group of robots lifting a bulky object. 



Figure 13. (Object Lifting) Averaged last five episodes fitness comparison for different design methods: 1) co-

evolution of behavior modules (uniform fitness sharing) and learning structure (blue), 2) co-evolution of behavior 

modules (valued-based fitness sharing) and learning structure (black), 3) hand-designed behavior modules with 

learning structure (the second uppermost solid line/green), and 4) hand-designed behavior modules and structure 

(uppermost solid line/red). Dashed lines across the hand-designed cases (3 and 4) show one standard deviation region 

across the mean performance. 

 



Figure 14. (Object Lifting) Averaged last five episodes and lifetime fitness comparison for uniform fitness sharing co-

evolutionary mechanism: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of 

behavior modules and learning structure benefiting from meme pool initial knowledge (black), 3) co-evolution of 

behavior modules and hand-designed structure (magenta), 4) hand-designed behavior modules and learning structure 

(the second uppermost solid line/green), and 5) hand-designed behavior modules and structure (the uppermost solid 

line/red).  Solid lines indicate the last five episodes of the agent’s lifetime and dashed lines indicate the agent’s 

lifetime fitness. Although the final time performance of all cases is close to each other, the lifetime fitness of memetic-
based designs is much higher. 



Figure 15. (Object Lifting) Fitness probability density comparison for uniform fitness sharing. Comparison is made 

among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that learn 
structure from a random setting (middle/green), and agents with hand-designed structure (right/red).  



 

Figure 16. (Object Lifting) Lifetime fitness probability density comparison for uniform fitness sharing. Comparison is 

made among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that 

learn structure from a random setting (middle/green), and agents with hand-designed structure (right/red).  

 



Figure 17. (Object Lifting) Probability distribution comparison for uniform fitness sharing (

! 

P Fitness "#{ } ). 

Comparison is made among agents using meme pool as their initial knowledge for their structure learning (black), 

agents that learn structure from a random initial setting (blue), and agents with hand-designed structure (magenta). 

Dashed lines are for distribution for lifetime fitness. Right-side tendency of distributions indicates higher chance of 
generating very good agents. 



Figure 18. (Object Lifting) Averaged last five episodes and lifetime fitness comparison for value-based fitness sharing 

co-evolutionary mechanism: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of 

behavior modules and learning structure benefiting from meme-induced initial knowledge (black), 3) co-evolution of 

behavior modules and hand-designed structure (magenta), 4) hand-designed behavior modules and learning structure 

(the second uppermost solid line/green), and 5) hand-designed behavior modules and structure (the uppermost solid 

line/red).  Solid lines indicate the last five episodes of the agent’s lifetime and the dashed lines indicate the agent’s 

lifetime fitness. The lifetime fitness of hand-designed behavior modules and learning structure is the flat dashed line. 

The lifetime fitness of structure learning without meme pool is the lower and that with meme is the upper dashed 

curve. Although the final time performance of all cases is rather the same, the lifetime fitness of memetic-based design 

is higher. 

 



Figure 19. (Object Lifting) Fitness probability density comparison for value-based fitness sharing. Comparison is 

made between agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents 

that learn structure from a random initial setting (middle/green), and agents with hand-designed structure (right/red).  

 



Figure 20. (Object Lifting) Lifetime fitness probability density comparison for value-based fitness sharing. 

Comparison is made among gents using meme pool as their initial knowledge for their structure learning (left/dark 

blue), agents that learn structure from a random initial setting (middle/green), and agents with hand-designed structure 

(right/red).  

 

 



Figure 21. (Object Lifting) Probability distribution comparison for value-based fitness sharing (

! 

P Fitness "#{ } ). 

Comparison is made among agents using meme pool as their initial knowledge for their structure learning (black), 

agents that learn structure from a random initial setting (blue), and agents with hand-designed structure (magenta). 

Dotted lines are for distribution for lifetime fitness. Right-side tendency of distributions indicates higher chance of 

generating very good agents. 
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Figure 22. A sample trajectory showing the position of robot-object contact points, the tilt angle of the object during 

object lifting, and controlling behavior module of robots at each time step after 50 generations of behavior modules 

cooperative co-evolution (with uniform fitness sharing) and 20 episodes of structure learning in each trial (meme is 

used). Behavior modules correspondence with numbers in the lowest diagram is as follows: 3 (Stop), 4 (Hurry up), 5 

(Slow down). Other behavior modules are not used in this sample co-evolved/learned architecture. 



 

Table 1. Problem Specification 

 

 

 Abstract Problem Object Lifting 

Problem Space 5x5 problem space and 7 actions Multi-robot object lifting 

Solution Space 

Seven behavior modules each can 

produce one type of action (behavior 

module 
i
B  has { }NAaA

ii
,= ) 

Five behaviors modules’ state and action 

space (Push more, Don’t go fast, Stop at 

goal, Hurry up, and Slow down.) 

Co-evolution 

Parameters 

Seven Populations, Generations = 

200, Population size = 30, No. of 

individual evaluations in each gen. = 

300, Tournament selection 

(competition between 3 individuals), 

the best individual of each genetic 

pool goes directly to the next 

generation, 5.0=
c
p  
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Five Populations, Generations = 50, 

Population size = 20, No. of individual 

evaluations in each gene.= 200, 

Tournament selection (competition 

between 3 individuals), the best 

individual of each genetic pool goes 

directly to the next generation, 5.0=
c
p  
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Learning 

Parameters 

Structure learning with ZO 

representation 

episodesepisode
1=!  

Structure learning with ZO representation 

! 

"episode

str = 0.1 0.99( )
episode

 

Memetic 

Parameters 

Culture size = 5 

3.0=
i
T

!  (22) 

Meme selection: scaled roulette 

wheel (p=0.9)/random (p=0.1) 

Culture size = 5 

3.0=
i
T

!  (22) 

Meme selection: scaled roulette wheel 

(p=0.9)/random (p=0.1) 

Experimentation 

Conditions 

100 episodes trial 

3 runs 

Fitness is the mean value of 

reinforcement signal during the 

agent’s lifetime 

300 time step lift-up, 005.0=!T  

25 (5) episodes trial for with structure 

learning (fixed structure) case 

3 runs for learning cases – 2 runs for fix 

structure case  - 1 run for pre-defined 

behaviors (no evolution) 

)3,2()1(3,2,1 Uz !  

Fitness (Lift time fitness) is calculated by 

averaging the last 5 episodes (all 

episodes) - Fitness (and not the Lifetime 

fitness) is used for evolutionary 

mechanism 

Performance 

Measures 

Received reinforcement signal 

(MA filtered with window size 10) 

1-Fitness (average of last 5 episodes) 

2-Liftime fitness (average of all episodes) 



Table 2. Hand-Designed Behaviors. 

Push more: vkvkv !+=+ )()1(  

Do not go fast: if max)( vkv >  then max)1( vkv =+  else do nothing 

Stop at goal: if goalzkz !)(  then stop ( 0)1( =+kv ) 

Hurry up: if 0)( !! >k  and the robot is the lowest one then 

),)(min()1( maxvvkvkv !+=+  

Slow down: if 0)( !! >k  and the robot is the highest one then 

)0,)(max()1( vkvkv !"=+  
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Table 3. Reinforcement Signal Definition 
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Table 4. State and Action Definitions for to be Evolved Behavior Modules 
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