
Interaction of Culture-based Learning and

Cooperative Co-evolution and its Application to

Automatic Behavior-based System Design

Amir massoud Farahmand
1,2,3

 Majid Nili Ahmadabadi
1,2

 Caro Lucas
1,2

Babak N. Araabi
1,2

Amir@cs.ualberta.ca Mnili@ut.ac.ir Lucas@ipm.ir Araabi@ut.ac.ir

(1) Control and Intelligent Processing Center of Excellence, Department of Electrical and Computer Engineering,

 University of Tehran, Tehran, Iran

(2) School of Cognitive Sciences, IPM, Tehran, Iran

 (3) Department of Computing Science, University of Alberta, Edmonton, Canada

 Abstract – Designing an intelligent situated agent is a

difficult task because the designer must see the problem from the

agent’s viewpoint, considering all its sensors, actuators, and

computation systems. In this paper, we introduce a bio-inspired

hybridization of reinforcement learning, cooperative co-

evolution, and a cultural-inspired memetic algorithm for the

automatic development of behavior-based agents. Reinforcement

learning is responsible for the individual-level adaptation.

Cooperative co-evolution performs at the population level and

provides basic decision-making modules for the reinforcement-

learning procedure. The culture-based memetic algorithm, which

is a new computational interpretation of the meme metaphor,

increases the lifetime performance of agents by sharing learning

experiences between all agents in the society.

In this paper, the design problem is decomposed into two

different parts: 1) developing a repertoire of behavior modules

and 2) organizing them in the agent’s architecture.

Our proposed cooperative co-evolutionary approach solves

the first problem by evolving behavior modules in their separate

genetic pools. We address the problem of relating the fitness of

the agent to the fitness of behavior modules by proposing two

fitness sharing mechanisms, namely uniform and value-based

fitness sharing mechanisms.

The organization of behavior modules in the architecture is

determined by our structure learning method. A mathematical

formulation is provided that shows how to decompose the value

of the structure into simpler components. These values are

estimated during learning and are used to find the organization

of behavior modules during the agent’s lifetime.

To accelerate the learning process, we introduce a culture-

based method based on our new interpretation of the meme

metaphor. Our proposed memetic algorithm is a mechanism for

sharing learned structures among agents in the society. Lifetime

performance of the agent, which is quite important for real-world

applications, increases considerably when the memetic algorithm

is in action.

 Finally, we apply our methods to two benchmark problems,

an abstract problem and a decentralized multi-robot object-

lifting task, and we achieve human-competitive architecture

designs.

Index Terms – behavior-based system design,

cooperative co-evolution, reinforcement learning, culture-

based method, memetic algorithm, structure learning, behavior

cooperative co-evolution.

I. INTRODUCTION

Our main research goal is to develop methods for the

automated design of situated agents. A situated agent is an

agent that directly observes the environment using sensors and

decides which action is most appropriate at any time. This

agent does not usually have complete knowledge of the

environment; instead, it faces the environment directly and its

decisions have immediate consequences. This problem is

difficult because the agent must deal with a potentially high-

dimensional, unknown stochastic dynamical system.

 We propose a bio-cultural approach for designing a

situated agent. Though our approach is general, we formulate

it for a hierarchical behavior-based architecture (See

[Brooks91] or [Ziemke98] for discussion of situated agents

and behavior-based systems, and refer to [Prescott99] for a

comparison of hierarchical behavior-based systems with their

biological counterparts). We decompose the design problem

into two sub-problems of developing behavior modules and

structure design and use a novel hybrid mechanism for solving

both of them. Our hybrid approach has three main elements:

(1) Cooperative co-evolution, (2) Reinforcement Learning

(RL), and (3) a culture-based memetic algorithm.

A cooperative co-evolutionary mechanism, similar to

[Potter00], is responsible for developing the new behavior

modules. These modules are cooperatively co-evolved in order

to maximize the performance (i.e. fitness; we use these two

terms interchangeably) of agents. The role of the

reinforcement learning mechanism is to organize these

evolved behavior modules in the agent’s architecture.

Reinforcement learning provides an adaptation mechanism on

the timescale of the agent’s lifetime. Moreover, to reuse

learned knowledge gained by other agents, our approach

shares the learned structure of the high-performing agents to

the “community” or “society” of agents. This knowledge

sharing is accomplished through our memetic algorithm,

which is quite different from the current belief of what a

memetic algorithm should be (we discuss this issue in Section

III.C). In our approach, memes act as a priori knowledge for

the structure learning process. This knowledge sharing

increases the expected lifetime fitness of agents. The lifetime

fitness, as opposed to the fitness, is the measure of an agent’s

performance from the beginning of learning to the end of an

agent’s lifetime. This is an important measure of performance

because in many problems we would like our agent to behave

well as soon as possible, and the lifetime fitness measures this

quality of the agent.

 The motivation behind this multi-scale task

decomposition is (1) to benefit from the global search

capability of an evolutionary mechanism, (2) to take

advantage of the fast adaptation of structure learning, and (3)

to reuse the previous experiences of other agents in the society

to accelerate the learning process. We will further discuss the

idea behind our approach in Section III and present its details

in Section V.

The idea of designing an agent’s controller by

decomposing it to several sub-problems and using bio-inspired

methods to solve them is potentially applicable to agents with

various types of architecture. However, we chose the

Subsumption Architecture (SSA) ([Brooks86]) from the

behavior-based paradigm as our agent’s architecture because

of its successful implementations in real-world problems (e.g.

[Brooks89], [Wang96], [Matari!98], [Parker98], and [Nili01]).

The organization of the paper is as follows. In Section II,

we survey related topics. More specifically, we first introduce

the behavior-based paradigm and motivate the desirability of

having automatic agent design methods (Section II.A), give a

survey of learning and evolutionary approaches for agent

design (Section II.B), and briefly introduce reinforcement

learning (Section II.C). Afterwards, we detail the main ideas

of our approach in Section III. We describe the roles of

cooperative co-evolution (Section III.A), learning (Section

III.B), and culture (Section III.C) in our framework. After

formalizing the agent in Section IV, we describe our design

approach in detail in Section V. There, we propose our

structure learning (Section V.A), behavior cooperative co-

evolution (Section V.B), and memetic algorithms (Section

V.C). Thereafter, we apply our approach to the decentralized

multi-robot object-lifting task and an abstract general

behavior-based problem in Section VI. We review our

important results and discuss them in Section VII. Conclusions

and future research directions are discussed in Section VIII.

II. RELATED TOPICS AND MOTIVATIONS

The goal of this section is threefold: We present the general

motivation behind this research, provide the basic background

of behavior-based systems and reinforcement learning needed

to understand the proposed method, and review some related

work.

A. Behavior-based Paradigm

We chose behavior-based paradigm as the design

methodology of the agent’s lower level “mind” or controller

([Brooks86] and [Brooks91]). Behavior-based systems are

biologically plausible, relatively robust, and fault-tolerant

architectures that have been used for several real-world,

challenging robotic tasks (e.g. [Brooks89], [Wang96],

[Matari!98], [Parker98], and [Nili01]).

 Example of Behavior-based Systems: To explain the

behavior-based paradigm and the meaning of “behavior” in it,

we give a simple example. Consider a robot designer who

wants to design a controller for a mobile robot. Her goal is to

create a “robot that moves around and avoids obstacles”. The

description of this task, as stated in the previous sentence, is

the subjective behavior of the robot and apparently depends on

the eye of the beholder.

To achieve this task, she designs two control modules.

The first module gives random movement commands to the

mobile robot. This module does not get any input from

sensors, but changes its output command from time to time.

She names this module “wandering behavior” because she

expects that whenever it controls the robot, the robot wanders

around. The other module receives input from proximity

sensors and rotates the robot whenever it comes close to an

obstacle. She names this module “obstacle avoidance

behavior” with a similar argument. Thereafter, she arranges

these two behavior modules in the agent’s architecture to

manage their interaction through an arbitration mechanism.

The arbitration mechanism determines which of these two

behavior modules should control the robot at any time. A

robot with these modules and architecture can be considered

as an example of a situated agent. It is situated because the

controller directly observes the environment and directly

commands the actuators. No part of the architecture builds an

explicit, abstract-level representation of the world, and there is

no planning module for manipulating symbols.

 The observable behavior of the robot is the result of

interaction of these two “behavior” modules with the

environment. It is possible that the interaction of these two

modules with the environment will lead to complex behaviors,

which have not been anticipated by the designer.

 For instance, in a heavily cluttered environment, where

there is always at least one object ahead of the robot, the

“obstacle avoidance” behavior module alone (without the

“wandering” behavior module) may always force the robot to

wander around and avoid obstacles (because there is always an

object in front of the robot which forces it to move from its

current position). In this case, the robot’s behavior does not

appear as mere “obstacle avoidance”, rather it can be

interpreted as “moving around the field and avoiding

obstacles”. This “behavior” of the robot is probably different

than the designer’s expectation of a pure “obstacle avoidance”

behavior module.

 Two Notions of Behavior: Note that in the previous

discussion we used the term “behavior” in two different

meanings. The first is when we refer to each of those internal

components of the robot’s controller. We call them “behavior

modules” because they are intended to produce some specific

behaviors, though it is possible that they behave differently in

practice. The second is the phenomenological interpretation of

the behavior. This interpretation refers to the behavior of the

agent as a whole when it interacts with the environment. This

behavior is the emergent result of possibly complex

interactions of those “behavior modules” with the

environment. In this paper, we use “behavior” in both senses.

Whenever we use the word “behavior” or phrase “behavior

module”, we intend the former meaning. We use “overall

behavior of the agent” when we are referring to the second

interpretation.

 Behavior-based Systems Design: Because of the

complex interactions of behavior modules with the

environment and themselves, designing a behavior-based

system to achieve a certain goal is not an easy job. Adding a

new behavior module may influence other behavior modules

and considerably change the overall behavior of the agent in

an unexpected manner. Indeed, one main drawback of

behavior-based systems has always been the difficulty of their

design. In practice, a designer often uses the tedious bottom-

up trial-and-error approach to devise a behavior-based system

that meets the required performance objectives [Brooks86].

 The difficulty of behavior-based system design suggests

that we should automate the design procedure to relieve the

burden on the designer. In spite of many successful

implementations of behavior-based systems (e.g. [Brooks89],

[Wang96], [Matari!98], [Parker98], and [Nili01]), most of

them are hand-designed, and there is not much work on

automatically designing an agent’s architecture (all the

aforementioned systems are hand-designed). The current work

suggests a hybrid approach for facilitating the design

procedure. In our approach, we evolve behavior modules and

learn the organization of those modules in the architecture. It

satisfies all aspects of autonomy mentioned in [Ziemke98], i.e.

(1) the behavior modules are self-organized, (2) the arbitration

mechanism is learned, and (3) the approach treats internal

memory and the input from external sensors in the same way.

B. Evolution and Learning

The design problem can be viewed as an optimization problem

in which we are looking for an appropriate set of parameters

such that our goals are satisfied. For hierarchical behavior-

based systems, such as the Subsumption Architecture, we are

searching for a set of parameters that describes the internal

workings of behavior modules as well as their organization

(structure) in the architecture. A good design methodology for

situated agents must have the following properties:

• Find a suitable and working set of parameters

quickly

• Work with hierarchical and multi-level decision-

making architectures

• Cope with non-stationary environments

• Produce modular and reusable components

 Most traditional adaptation approaches do not provide

this amount of flexibility. For instance, learning algorithms

that are based on local search may not find a good solution in

a large and bumpy parameter space and can get trapped in a

local optimum. This is especially true for policy-gradient

reinforcement learning methods (See [Baxter01], [Kakade02],

and [Ghavamzadeh06] for a few examples of policy-gradient

methods). Nevertheless, learning methods can be relatively

fast in finding some solutions even in non-stationary

environments, given that the learning parameters are set

properly. On the other hand, evolutionary approaches can

usually find good solutions for a problem given enough time.

Nevertheless, traditional evolutionary methods are slow and

do not handle non-stationary environments very well.

Therefore, they are not very suitable for a situated agent that

has to respond quickly to changes in the environment.

Moreover, most of them do not produce modular controllers,

which is an important issue for designing a reusable controller.

Learning and Evolution for Behavior-based System

Design: There have been some efforts to use learning or

evolution to partially automate the design procedure for

behavior-based systems. Examples of learning-based

approaches for behavior-based system design include Maes et

al. which used learning to adjust firing precondition of

behavior modules [Maes90]. Mahadevan et al. proposed a

learning mechanism to adjust behavior modules of the fixed-

structured Subsumption architecture [Mahadevan92]. In

[Matari!92], they developed a method for learning an

environment’s topological map. In [Matari!94] and

[Matari!97], they used shaped reinforcement signal and

progress estimator to accelerate learning. In [Michaud98], a

memory-based approach was used to select behavior modules.

In [Kohl04], they used a policy-gradient method to find a good

gaiting for a quadrupedal locomotion. In [Matari!01], one can

find a summary of several works that use the learning

approach to design behavior-based systems.

Artificial evolution has also been used to design situated

agents ([Harvey93], [Floreano96], [Floreano00], [Nolfi00],

and [Chernova04]). Two examples of more closely related

work are [Koza94] which used genetic programming to evolve

SSA-like architectures in the wall following task and

[Togelius04] which devised layered incremental evolution in a

SSA-like architecture. This latter work tried to evolve modular

behavior-based systems. [Floreano08] provides a recent

survey of evolutionary robotics.

Taking advantage of the good properties of evolution and

learning in a complementary manner is highly desirable. There

is some research exploiting the good properties of evolution

and learning, but they are not extensive (See [Nolfi99] for a

survey of applications of learning in evolutionary robotics). It

is worth mentioning that the way learning is usually used in

evolutionary robotics context is somewhat different from what

is meant in the reinforcement learning framework [Sutton98].

In the evolutionary robotics literature, learning mostly refers

to neural network weight adaptation in an unsupervised (e.g.

Hebbian rule) or supervised manner. The goal of learning in

the evolutionary robotics literature is thus not usually

explicitly formulated as maximizing some function of received

rewards as in reinforcement learning. In our approach, we

explicitly try to a maximize reward function, so our learning

aspect is more similar to the mainstream reinforcement

learning.

Although it would seem that defining a suitable reward

signal is not always straightforward, successful applications of

reinforcement learning suggest that we may benefit from

explicitly formulating the lifetime goal of an agent as

maximizing a function of reward (e.g. the average or

discounted sum of reward) and defining the fitness of the

agent accordingly. As a similar view, [Whiteson06] used a

neural network as a function approximator for reinforcement

learning. However, instead of adapting a single neural

network, they evolved a population of networks and adjusted

their parameters using reinforcement learning. Their idea was

that evolution would find a set of neural networks that let the

agent learn better. In this paper, we propose a design

methodology that benefits from both learning and evolution

paradigms in addition to a culture-based knowledge sharing

mechanism to develop behavior-based architectures. The

feasibility of the proposed approach in its preliminary form is

shown in [Farahmand06].

C. Reinforcement Learning

Our structure learning method is formulated as a

reinforcement learning (RL) problem. In the following

paragraphs, we briefly introduce reinforcement learning

without going into details. Interested readers can refer to

[Bertsekas96] and [Sutton98].

Reinforcement learning is a mathematical framework for

sequential decision-making problems. The goal is deciding the

optimal set of actions when an agent is situated in a stochastic

dynamical environment. We describe this framework by

giving an example. Suppose we want to design a humanoid

robot playing soccer. The robot has some sensors, like a

camera and a microphone, to observe the environment. We

define its objective as playing soccer and scoring goals on the

opponent; and we seek a policy that leads to this aim.

Reinforcement Learning Framework: This problem

can be stated in a reinforcement learning framework. The

robot is the agent, and the soccer field is its environment. The

agent perceives the state

!

s
t
" S of the environment at time

!

t

(the position of all players, the position of the ball, commands

or requests from coach, etc.) and selects action

!

a
t
" A that is

the robot’s movement command. This action is selected

according to the policy

!

" : S# A of the agent. The policy is

a function that decides which action should be selected and

executed at any state.

The environment has stochastic dynamics that depend on

the current state and the executed action. In our example, the

dynamics are the way a given action (e.g. go forward) changes

the position of the robot on the soccer field. These dynamics

are generally probabilistic because of noise and other

unknown effects and can be described as the state-action

transition model

!

P(s
t+1 | st ,at) . This model describes the

probability of going to state

!

s
t+1

 if the agent chooses action

!

a
t
 in state

!

s
t
.

Meanwhile, the agent receives reward

!

r
t
 showing the

merit of the action it was executing in that state. For instance,

if the agent scores a goal, it will receive a positive reward +1,

and if it scores an own goal, it will receive a negative reward -

1, etc. We can state our desiderata as a reward (or

reinforcement) function that generally depends on the current

state

!

s
t
, the executed action

!

a
t
, and the next state

!

s
t+1

, i.e.

!

r(s
t
,a

t
,s
t+1) . Note that in general the reward can be delayed

and the agent does not immediately receive it after executing

an action. For example, the decision to move toward the

opponent’s penalty area does not yield reward immediately;

the reward is only given much later if the agent scores a goal.

The goal of reinforcement learning is to find a policy

!

"

that maximizes a function of the received rewards. This

function, named the value function

!

V , should be defined

based on our needs. For instance, we can try to maximize the

expected average reward during a finite period of time or we

may prefer to maximize the expected discounted sum of

rewards whenever rewards in the near future are more

important than rewards in the distant future (a stock market is

an example of this kind of problems where the value of a

money decreases over time). A reinforcement learning agent

gradually improves its policy by interacting with the

environment and getting

!

(s
t
,a

t
,r
t
,s
t+1) samples.

The important property of the reinforcement learning

framework, which makes it different from dynamic

programming, is that it does not assume the dynamics of the

environment

!

P(s
t+1 | st ,at) and the reward function

!

r(s
t
,a

t
,s
t+1) a priori. Because of this, one can say that

reinforcement learning is a sample-based version of dynamic

programming.

In this paper, we estimate the value of a structure

(instead of the value of a state) by interacting with the

environment, and try to find the structure that maximizes that

value. Here, the structure acts like the policy.

Hierarchical Reinforcement Learning: Because our

structure learning method applies to hierarchical architectures,

we review several works in the hierarchical RL literature.

There exist several RL methods for hierarchical architectures

such as Feudal RL [Dayan93], Options [Sutton99], MaxQ

value decomposition [Dietterich00], Hierarchies of Abstract

Machines (HAM) [Parr98], and a policy-gradient approach to

hierarchical RL [Ghavamzadeh03]. However, there are some

important differences between our approach and more

common methods for hierarchical RL. First of all, our

architecture has a behavior-based nature. Each component of

our architecture is a complete behavior, which is produced by

the evolutionary mechanism. It decides on its own without

getting any command from a central coordinator or from other

behavior modules. Each behavior module is thus a direct map

from the perception space to the action space. The distributed

nature of the architecture enables the agent to work properly

even if a few of its behavior modules become faulty. This is

not common in most hierarchical RL methods, such as Feudal

RL, MaxQ, and HAM, where there is usually some central or

higher-level coordinator. The other important difference

between our approach and traditional hierarchical RL methods

is that our learning method tries to find an optimal or

suboptimal structure (hierarchy), whereas other hierarchical

RL methods are not directly concerned with hierarchy, but

learn each component’s optimal or suboptimal mapping. In

our approach, a cooperative co-evolutionary process adapts

the behavior modules. See [Barto03] for a survey of

hierarchical RL methods.

III. THE MAIN IDEA

Our approach to the hierarchical behavior-based system design

decomposes the problem into two sub-problems and benefits

from learning, cooperative co-evolution, and culture-based

methods to solve those sub-problems. Our first sub-problem is

developing a suitable set of behavior modules, and the second

one is organizing those behavior modules in the architecture.

 The suggested approach for solving this problem has

three main components: (1) behavior cooperative co-evolution

that solves the behavior development problem, (2)

reinforcement learning for structure learning that finds the

organization of behavior modules during the agent’s lifetime,

and (3) a culture-based memetic algorithm that accelerates the

structure learning method and enhances lifetime performance

of the agents (Fig. 1 shows the relationships between the

cooperative co-evolutionary mechanism, the learning agent,

and the culture).

One may ask the reason for selecting the evolutionary

mechanism for designing behavior modules and reinforcement

learning for organizing them, since other combinations are

also possible. Our choice is based on the special form of

hierarchical behavior-based architecture that we deal with in

this paper. The main reasons for this choice are (1) the larger

space of behavior modules compared to the space of structures

in our architecture, and (2) the effects of a small change to the

behavior modules/structure on the overall behavior of the

agent. The practical consequence of this difference is that if

one tries to considerably change the overall behavior of the

agent and to adapt it to new conditions of the environment, it

is easier to change the structure of the agent than its behavior

modules. This may be helpful in cases when behavior modules

have not been well-adapted to the current environment and we

need a new, acceptable (but not necessarily optimal) solution

to our problem quickly. Also, evolutionary methods are

usually more effective in finding good solutions for high-

dimensional optimization problems than local search methods.

Therefore, in this research, we chose to evolve behavior

modules (which has a larger search space) and to learn the

structure of the agent (See [Farahmand05A] and

[Farahmand05B] for examples of using learning for adaptation

of both behavior and structure).

 We discuss the main components of the proposed

methods in the following.

A. Cooperative Co-evolution of Behaviors

To solve the problem of developing a suitable set of behavior

modules, we use a cooperative co-evolutionary mechanism.

The proposed cooperative co-evolutionary method evolves

behavior modules, which are the basic components of the

behavior-based agent’s architecture.

 In our cooperative co-evolutionary method, we have

several different behavior (genetic) pools in each of which a

specific type of behavior modules evolves. Individuals in these

behavior pools encode instances of behavior modules (notice

behavior pools in Fig. 1). The agent is composed of several

behavior modules where each of them comes from a separate

population. This type of encoding is sometimes called

phenotypic co-evolution (as opposed to genotypic co-

evolution described in [Krawiec07]).

 The representation of individuals and the genetic

operators depends on the problem and the designer; e.g. one

may choose a neural network to describe the behavior

modules, so the designer encodes the topology/weights of

neural networks in a specific way, and defines crossover and

mutation operators accordingly.

 As an example of this cooperative co-evolutionary

method, consider generating “obstacle avoidance” and “light

seeking” behavior modules for a mobile robot. We need two

behavior pools. In one pool, we evolve behavior modules that

receive sonar readings and output the movement direction of

the robot (obstacle avoidance) and in the other pool we evolve

behavior modules that receive the input from vision sensors

and output the motor command (light seeking).

 The goal of the behavior co-evolution is to evolve

several behavior modules such that if they are put together in

the architecture, the agent’s fitness (which depends on its

performance in the environment) will be high. To achieve this

goal, behavior modules should be cooperatively evolved in a

way that their fittest solution is close to the optimum solution

for the agent as a whole. This is not a trivial task, and we later

discuss Uniform and Value-based Fitness Sharing

Mechanisms for forcing this desideratum in Section V.B.1.

 Our cooperative co-evolutionary mechanism, as

described in Section V.B., is similar to what is known as

cooperative co-evolutionary algorithms in the evolutionary

computation literature (See [Potter00] and [Wiegand04]). In

cooperative co-evolutionary algorithms, each population

evolves a sub-component of the solution separately. Those

sub-components are evaluated together and the sub-

component’s fitness is assigned based on this performance

measure. In our agent development framework, those sub-

components are behavior modules, and Uniform and Value-

based Fitness Sharing Mechanism are two ways to assign

fitness to sub-components.

B. Individual Learning

Now, suppose we have an appropriate set of behavior

modules. An important question is how to organize these

modules in the agent’s hierarchical architecture. This problem

has a combinatorial optimization nature. Some combinations

of behavior modules lead to acceptable performance and some

do not. For instance, suppose we have two behavior modules:

“wandering” and “obstacle avoidance”. Furthur assume that

the architecture is multi-layer and the higher layers can

suppress the lower layers whenever the higher behavior

modules become activated (we will precisely define our

architecture and the meaning of “activation” in Section IV). If

the “wandering” module is higher than the “obstacle

avoidance” module, the agent always executes the

“wandering” behavior and never executes the “obstacle

avoidance”. This specific organization of behavior modules

likely leads to crashing into obstacles. On the other hand, if

the “obstacle avoidance” behavior module has a higher

priority than the “wandering” behavior module, the agent

would wander in the world and avoid obstacles when they are

confronted.

 The goal of the individual learning component of our

agent design methodology is finding an appropriate ordering

of behavior modules, i.e. the agent’s structure. The proposed

structure learning method is based on reinforcement learning

principles. It seeks the organization of behavior modules that

maximizes the received reinforcement signal.

The interplay of learning and evolution is important in

our framework. Learning has a multi-level effect on the agent

and its society. It adapts the agent to the current environment.

This is especially helpful whenever the environment changes

faster than what evolution can track. Moreover, learning can

indirectly influence the genetic material of a species through

the Baldwin effect (as opposed to the Lamarckian viewpoint

which says that learned traits can directly be inherited). An

individual that learns can find a local optimum even if the

phenotype induced by the genotype was not close to the

optimum. This effect increases its chance of survival.

However, learning takes precious lifetime of the individual.

This generates a selection pressure toward individuals that

have the correct phenotype from birth - without any need for

learning (See [Hinton87] for a computational model on the

effects of learning and evolution, and [Nolfi99] for a survey of

the mutual effect of learning and evolution).

C. Culture-based Memetic Knowledge Sharing

Learning not only changes the fitness landscape, but also

affects the culture of the society the agent is living in. This

culture can, in return, have an effect on learning, too. Culture,

as we interpret it, is a medium for sharing experiences and

solutions to previously encountered problems. Each individual

may use this common knowledge as its initial knowledge and

then refine this knowledge for its own special needs. The

individual may share this new solution with other members of

society through social interactions and incrementally change

the culture.

 If we assume the problems that individuals face are more

or less similar, and also assume that they have similar tools

and means for solving them, we can conclude that agents can

benefit from previously experienced ways of success or failure

by sharing this learned knowledge through the described

cultural mechanism.

The latter description of knowledge transfer in the

society bears resemblance to the meme metaphor. A meme is

“a unit of information that reproduces itself as people

exchange ideas” [Dawkins76]. Memetic algorithms

[Moscato92], which are considered a hybridization of local

and global search in the evolutionary computation community,

are a promising meme-inspired approach for solving difficult

optimization problems efficiently ([Radcliffe94], [Merz99],

[Merz00], [Buriol04], [Krasnogor04], [Ong04], and [Zou04]

are a few examples of traditional memetic algorithms. See also

[Moscato03], [Krasnogor05], and [Smith07] for reviews of

memetic algorithms). The idea of this interpretation of

memetic algorithms is that local search can guide us to a local

optimum quickly while global search methods, such as those

common in evolutionary algorithms, increase the chance of

finding a very good or even optimal global solution.

Nevertheless, the idea of a meme can be interpreted and

implemented in other ways rather than as a simple local search

before/after a genetic operator - as is common in the

evolutionary computation community (See [Federici03] for a

sample of other interpretations of memes). For instance, here,

we consider a meme as the tradition or the cultural belief for

solving a problem common to many agents in the society.

Those beliefs act as good a priori knowledge for solving a

common problem, while the individual fine tunes that

knowledge for its special needs. The individual can transfer

this knowledge back to the culture or the meme pool - as we

call it in this paper. In summary, in this interpretation, memes

act as a priori knowledge for the learning process. We use this

interpretation of memes alongside the traditional one in this

paper.

IV. MATHEMATICAL MODEL OF THE

AGENT

Our behavior-based architecture consists of a set of behavior

modules parallel to each other with different priorities, see

Fig. 2. Behavior modules that are placed higher in the

structure have priority over lower modules. As an example of

this architecture, consider our designer’s mobile robot with

three behavior modules “wandering”, “light seeking”, and

“obstacle avoidance”. The agent with this set of behavior

modules observes the combined state

!

s of its environment and

itself and proposes action

!

a . The agent’s state changes

according to the dynamics of the environment, and it receives

a reinforcement signal

!

r .

Suppose we have a set of

!

n behavior modules

!

B
i

{ };i =1,...,n , defined as the following map between state

and action (See Fig. 3):

!

B
i
: " S

i
" A

i
 i =1,...,n

" A
i
= A

i
$ No Action{ }, " S

i
= " s

i
" s
i
= P

i
(s);%s& S

i{ }
S

i
' S, A

i
' A, P

i
: S # " S

i

(1)

where

!

S is the state space (which consists of the inputs from

sensors and possibly the internal memory of the agent),

!

S
i
 is

the subset of the state space observable by behavior module

!

B
i
 (

!

Si" S j #$, in general),

!

A is the set all possible actions,

and

!

A
i
 is the set of

!

B
i
’s output actions, i.e. actuators.

!

P
i
 is the

mapping that projects the agent’s state

!

S to the behavior

!

B
i
’s

perception. As the formulation indicates, all behaviors’ inputs

are not necessarily the same. This is reasonable since in real-

world problems different behavior modules observe the world

differently. For instance, “obstacle avoidance” uses sonar

sensors as its input, and “light-seeking” behavior module just

uses the output of light-sensitive sensors.

 In our architecture, each behavior module

!

B
i
’s action

space is augmented with “No Action” (NA). NA is a virtual

action that even if selected does not change actuators. The role

of NA is allowing behavior modules not to activate in some

regions of their excitation space. If NA is selected

appropriately, it would enable the agent to achieve higher

performance. To see why, suppose the agent has no NA. If we

add NA, it can achieve the same performance level by simply

ignoring the newly added NA actions. However, it is possible

that for some states, the agent chooses a NA and gains more

reward by letting lower behavior modules take control. If the

algorithm can find the global optimum, the performance of the

agent with NA would be certainly equal or greater than the one

without. Nevertheless, there is a trade-off between extra

flexibility coming from this additional virtual action and the

difficulty coming from the slightly enlarged search space (the

increase in the search space would be negligible if the size of

!

A
i
 is already large).

In order to see how a behavior module works, suppose

the world state is

!

s" S . Each behavior module

!

B
i
 senses

!

S

through

!

P
i
-projected subspace

!

" S
i
. If

!

s
i
" S

i
 (or

!

" s
i
" S

i
 in

the behavior’s internal representation), behavior

!

B
i
 will be

excited. Behavior module

!

B
i
 will be activated and output

!

a
i

if

!

a
i
= B

i
(P

i
(s

i
)) = B

i
(" s

i
) # NA . Behavior module

!

B
i
 does

nothing if it is not excited or it is excited but selects

!

a
i
= NA.

It is the job of the designer to specify these excitation

subspaces –which is equivalent to the design of sensory

system for a controller. However, the agent itself will “figure

out” when to become activated through a co-evolutionary

mechanism.

As a clarifying example, suppose our mobile robot is in

the middle of a large room with a lamp in a corner. The robot

has eight sonars and there are four light-sensitive sensors; so a

12-dimensional vector describes the state of the system

!

s = sonar
1"8 light

1"4[]
T

. In this situation, two of the

robot’s light sensors turn on because they observe the lamp.

Also, sonar sensors report a large number because no object is

close to them. The “Obstacle avoidance” behavior module

only uses sonars information to decide. Therefore, it just

observes the first eight dimensions of the state space (i.e.

!

P
obstacle

:"12 #"8
). It also becomes excited whenever any

of the sonars report a distance closer than some threshold, say

two meters. The light-seeking module observes the last four

dimensions of the state vector and becomes excited if any of

those values is non-zero. In the aforementioned situation (the

robot in the middle of the room), the “obstacle avoidance”

behavior module does not become excited because it is far

from any objects. However, the “light-seeking” module

becomes excited since two of its dimensions are non-zero.

Depending on the behavior module, it may suggest a real

“action” (such as a “move forward”) or NA. Here, suppose the

“light-seeking” module suggests an action that leads the robot

toward the light. After a while, our robot gets close to a wall.

Now, the sonar readings are showing distances smaller than

two meters. In this situation, the “obstacle avoidance” module

becomes excited in addition to the “light-seeking” module.

The agent cannot simultaneously execute the suggested

action of all behavior modules, and thus a conflict arises.

Deciding which action should control the agent depends on the

agent’s architecture.

In this paper, we consider a special but important case of

the Subsumption Architecture and call it the Purely Parallel

Subsumption Architecture (PPSSA), see Fig. 2. PPSSA is a

hierarchical behavior-based architecture in which all behavior

modules are parallel to each other. In PPSSA, a higher

behavior module has the priority to suppress the lower ones.

Suppressing means that the higher activated behavior does not

let the lower activated (and suppressed) behaviors put their

actions on the actuator’s bus and control the agent. In this

situation, no matter what the actions of lower behaviors are,

the agent is controlled by the action of suppressing behavior.

Whenever a behavior module becomes activated and suggests

some action and is not suppressed by any other behavior, that

behavior module becomes the controlling behavior of the

agent.

To formalize our architecture, assume that we have a set

of

!

n behavior modules

!

B
i

{ } and an

!

m -behavior architecture

!

T consisting of

!

m of those behaviors (

!

m " n). The set

!

B
i

{ }

shows what behavior modules are available in the architecture.

The vector

!

T describes the organization of behaviors in the

architecture. The element

!

T(i) denotes the behavior module in

the

!

i
th

 layer of

!

T where the numbering starts from the lowest

layer, e.g.

!

T(1) is the index for the lowest behavior in the

architecture. We can define the architecture by knowing

!

B
i

{ }

and

!

T as follows:

!

T = [Bind (1) Bind (2) ... Bind (m)]
T m " n

ind(i): j (that indicates B j is in the ith layer)
. (2)

As an example, our mobile robot’s controller is described by

the set of behavior modules

!

Avoid obstacle, Light Seeking, Wandering{ } and the structure

!

T = wandering light seeking obstacle avoidance[]
T . This

structure shows that the highest behavior in the architecture is

“obstacle avoidance” and the lowest one is “wandering”. The

goal of this paper is to learn this structure and to co-evolve

those behavior modules automatically.

V. PROPOSED METHOD

In this section, we describe our hybrid behavior-based system

design framework in detail. Consider that we want to develop

a behavior-based agent. We need to find a suitable behavior

module repertoire

!

B
i

{ } and an appropriate organization of

them in the architecture

!

T such that our objectives are met.

We define our objectives as a function of the reinforcement

signal that the agent receives. Having

!

r
t
 as the reinforcement

signal received at time

!

t (which may depend on the system’s

state, selected action, etc.) and defining

!

R as a random

variable that indicates the episode’s return for the agent, the

value of the whole system with structure

!

T and set of

behavior modules

!

B
i

{ }

!

(i =1,...,n) is

!

V
T

= E
"

1

N
r
t

t=1

N

#
the agent with structure T

 and set of behaviors B
i{ }(i =1,...,n)

$

%
&
&

'

(
)
)

= E
"
R

the agent with structure T

and set of behaviors B
i{ }(i =1,...,n)

$

%
&
&

'

(
)
)

. (3)

in which expectation is taken over all possible trajectories of

the agent during its lifetime. If the task is continual, the state

distribution may become stationary and this expectation will

be with respect to the induced state distribution. The

probability distribution of trajectories (or the stationary

distribution) depends on the state transition probability of the

environment (

!

P(s
t+1 | st ,at)) and the policy

!

" of the agent.

The policy of the agent is a function of the state space to the

action space. For PPSSA, it depends on the behaviors

!

B
i

{ }

and their organization

!

T in the way described in Section IV.

We may omit the explicit dependence of the value function on

the agent’s policy in the rest of the paper to simplify our

notation.

The design goal is finding a set of behaviors and the

structure that maximize the value of the agent. This can be

formalized as

!

B
*
i{ },T*{ } = argmax

B
i{ },T

V
T

. (4)

where

!

T
*
 is the optimal structure and

!

B
i

*{ } is the set of

optimal behaviors. Note that the result of optimization

problem depends on the way we define the space of behaviors.

For example, the result would be different depending on

whether we define it as a set of look-up tables or linear

function approximators.

As equation (4) shows, there are two different parameter

sets for the optimization task that are dependent on each other:

parameters that describe each behavior module and parameters

that describe the organization of behavior modules in the

architecture. One may take different approaches to solve this

optimization problem: evolving behavior/evolving structure

separately or together, learning behavior modules and

evolving structure, evolving behavior modules and learning

structure, or learning both behavior modules and the

architecture.

If we want a modular system with re-usable behaviors,

we should not change behavior modules very fast. If we do so,

we need to develop a new set of behavior modules for every

new situation the agent may face. Instead, we can re-organize

behavior modules in the structure in order to change the

overall behavior of the agent whenever it faces change in the

environment or the goal.

In the structure learning, we assume having a behavior

module repertoire

!

B
i

{ } and our goal is choosing an ordered

sequence

!

T with

!

m out of

!

n behaviors that maximizes (3):

!

T
*

= argmax
T

V
T

. (5)

On the other hand, the behavior co-evolution problem

considers adjusting each behavior

!

B
i
’s mapping from its own

state space (

!

" S
i
) to the augmented action space (

!

" A
i
) using

evolutionary process. In other words, a behavior module must

choose an appropriate action

!

a
i

*
 in each

!

" s
i
 that maximizes its

fitness in

!

T
*
.

To develop a behavior-based agent, we co-evolve a set of

behavior modules in their own genetic (behavior) pools. Each

pool has its own genetic properties and in general, different

behavior modules have different genotypes. The algorithm

randomly selects a behavior module from each pool to make a

set of behaviors

!

B
i

{ } and gives it to the agent (Fig. 1). By

interacting with the environment and receiving a

reinforcement signal, the agent tries to find an ordering of

behavior modules that maximizes the received reward. This

means that the agent tries to find the best possible architecture

for the given set of behaviors. Thereafter, the agent is assigned

a fitness based on its performance. The fitness is based on

some weighted average of the agent’s received reinforcement

signal during its lifetime. Noting that we need to evolve

behavior modules to increase the agent’s fitness, we need a

mechanism to relate the fitness of the agent to the fitness of

behavior modules –this is called credit assignment in multi-

agent learning literature [Harati07]. This mechanism must

force the cooperation between behavior pools so that the agent

can maximize its fitness. We discuss this mechanism in

Section V.B.1.

The aforementioned optimization procedure is similar to

the traditional notion of memetic algorithms as there is a local

search stage during evolution. Despite this similarity, the

learning is not directly performed in the space of behavior

modules, but instead it is done in the space of structures that

uses those genetically inherited behavior modules as its

components. In our approach, the search space for evolution is

not the same as the search space for learning, though they are

coupled through the agent’s performance in the environment.

After the agent’s lifetime, it returns the best learned

structure to the culture of its society (meme pool). Based on

the agent’s fitness (which depends on both the learned

structure and the set of available behavior modules), the meme

would survive in the culture or diminish. This meme pool acts

as a guide to newborn agents. A “baby” agent receives one of

those memes from the meme pool as its initial structure. This

initial knowledge helps the agent to perform better from its

early stages of life.

We should emphasize that two different meme-like

concepts are used in our framework:

• Local search after evolution (structure learning)

• A culturally-induced a priori knowledge based on

the best surviving structures

Pseudo-code of the proposed approach is outlined in Fig.

4. Details of each component of the method are described in

the next subsections.

A. Structure Learning

In this subsection, we propose a method for structure

learning. Our aim is finding

!

T
*
 that satisfies (5) assuming that

we have

!

B
i

{ } (a set of behavior modules given to the agent

by the designer or developed by the co-evolutionary

mechanism). To solve this problem, we need to find solutions

to the following sub-problems:

Representation: How should the agent represent

knowledge gathered during learning?

Hierarchical Credit Assignment: How should the agent

assign credit to different behavior modules and layers in its

architecture?

Knowledge Updating: How should the agent update its

knowledge when it receives reinforcement signal?

The agent must have a data structure where its lifetime

experiences can be stored in a meaningful and compact way.

This representation is used to infer the correct organization of

behavior modules. An appropriate representation must be

capable of defining a large class of possible combinations of

structures, have a small representation space and, use

information gathered during learning wisely. The other

important issue is determining the responsibility of behavior

modules for the received reinforcement signal and assigning

appropriate credit to them, i.e. the hierarchical credit

assignment problem. A good choice of representation

facilitates this task. The last issue is the way we should update

the knowledge representation using clues from the credit

assigner.

We solve these problems constructively starting from

defining an appropriate representation named the Zero-Order

representation. Thereafter, we show how to decompose the

whole system’s value function

!

V
T

 (3) into simpler

components that can be estimated online. This decomposition

allows us to take advantage of the system’s architecture to

assign credit to its components and to update values

effectively.

A.1) Zero-Order Representation

In this representation, we store the expected value of

each behavior module in each layer. In other words, the merit

of being in a layer for each behavior module is stored. We

write the value of the structure

!

T as

!

V
T

= E
"
R[] = E

"

1

N
r
t

t=1

N

#
$

%
&

'

(
)

= E
"

1

N
r
t
* "L1 is controlling"+"L2 is controlling"+...+"L

m
 is controlling"(){ }

t=1

N

#
$

%
&

'

(
)

= E
"

1

N
r
t
*"L1 is controlling"{ }

t=1

N

#
$

%
&

'

(
) + ...+ E

"
r
t
*"L

m
 is controlling"{ }

t=1

N

#
$

%
&

'

(
)

= E
"

1

N
r
t# | L1 is controlling

$

% &
'

()
, P(L1 is controlling)

+ E
"

1

N
r
t# | L2 is controlling

$

% &
'

()
, P(L2 is controlling)

+...+ E
"

1

N
r
t# | L

m
 is controlling

$

% &
'

()
, P(L

m
 is controlling)

(6)

where

!

E
"

1

N
r
t# | L

i
 is controlling

$

% &
'

()
 is the expected reward

following the agent’s policy when the

!

i
th

 layer takes control

and

!

P(L
i
 is controlling) is the probability of a layer

!

L
i
 being

the controlling one. Note that this decomposition is possible

because different time instances

!

t "L
i
 is controlling" in timestep t{ } are mutually exclusive.

Here, we assume that at least one of the behavior modules is

active at every moment, so we can write the third equality.

Defining

!

VZO (i, j) -Zero-Order value- as

!

VZO (i, j) =Vij = E
"

1

N
rt#
B j is the controlling

 behavior in the ithlayer

$

%
&
&

'

(
)
)
(7)

we have

!

E
"

[
1

N
rt# | Li is controlling]

= P B j | Li{ }E
"

1

N
rt# B j is the controlling behavior in Li

$

% &
'

()
j=1

n

#

= P B j | Li{ }Vij

j=1

n

i =1,...,m

 (8)

where

!

P B j | Li{ } is the probability that

!

B j
 is the controlling

behavior whenever

!

L
i
 is the controlling layer. Altogether,

!

V
T

can be written as

!

VT = P B j | Li{ }VijP Li is controlling()
j=1

n

"
i=1

m

" . (9)

The cardinality of the representation space is

!

cardinality(ZO) = n "m . (10)

which is much smaller than the cardinality of a representation

that stores all possible behavior combinations.

 Equation (9) relates the value of the agent to the

organization of behavior modules in its structure. Therefore,

we can estimate the value of a structure by evaluating this

summation provided that we know all terms used in the

summation. In order to find the optimal structure, we should

find the structure that satisfies (5). To do so, we must have an

estimate of

!

Vij
,

!

P L
i
 is controlling() , and

!

P B j | Li{ }.

According to the definition of

!

Vij
 (7), credit assignment

is straightforward:

!

Vij
 must be updated whenever

!

B j
 is the

controlling behavior module in the

!

i
th

 layer. Therefore, if

layer

!

i is the controlling layer and

!

B j
 has been activated in it

while the system receives the reinforcement signal

!

r
k
,

!

Vij

must be updated similar to what is common in reinforcement

learning:

!

Vijk+1
= 1"#k,ij()Vijk

+#k,ij rk

whenever B j is the controlling

behavior in the ith layer

$

%
&

'

(
)

 (11)

with

!

0 <"k,ij #1. Based on the value of

!

"k,ij , we put more

or less emphasis on the old experiences.

Estimation of

!

P L
i
 is controlling() and

!

P B j | Li{ } is

not difficult and one can set a counter for these variables and

increase them accordingly. However, there is another elegant

method to estimate all of them at once. Instead of updating

components of (9) separately, it is possible to estimate all of

them together by defining

!

˜ V ij as

!

˜ V ij = P B j | Li{ }VijP Li is controlling() . (12)

 Therefore, we have

!

˜ V ijn+1
= 1"#n,ij() ˜ V n,ij

+#n,ij

"B j is active at time step n"$

"Li is controlling at time step n"$

rn

%

&

'
'
'

(

)

*
*
*

 (13)

with

!

0 <"n,ij #1.

Hence, it is now possible to find the arrangement of

behavior modules that satisfies (5) and maximizes reward.

Different methods can solve the combinatorial optimization

problem of finding

!

T
*
. In our implementations, we have used

simple stochastic search. That is, calculating values for many

different randomly chosen structures and selecting the one

with the highest value.

There is another way to represent the value of structure.

Similar to what we did in this subsection, one can develop a

structure learning method based on the First Order

representation [Farahmand05A]. In that representation, we

store the value of the relative ordering of behavior modules in

the structure (as opposed to the value of a behavior module

being in a specific layer of the structure in the Zero-Order

representation). Nevertheless, the current representation is

sufficient for our agent design task and we do not use the First

Order representation in this paper.

One final note about the structure learning method is

worth mentioning. When we want to find an architecture that

maximizes (9), we need to have estimates of

!

Vij
,

!

P L
i
 is controlling() , and

!

P B j | Li{ }. These estimates,

however, depend on the current structure of the agent, and

therefore, may not be an accurate and unbiased estimate for

any arbitrary structure. The result would be that we are

actually solving an approximate version of the original

optimization problem. This problem has resemblance to off-

policy policy evaluation in the conventional reinforcement

learning framework, which is not easy in general. Most likely,

the estimated error would be very small whenever we are

evaluating the same structure that the agent uses for decision-

making (this case is like on-policy evaluation as in SARSA

[Sutton98]). This error would be larger for structures that lead

to totally different selection patterns of behavior modules. An

analysis precisely showing this effect is not presented in this

paper and the mathematical description of the convergence

behavior of the provided structure learning algorithm remains

an open problem. However, by randomly selecting structures

during the agent’s lifetime, we can help the agent find the

optimal structure. In practice, the behavior of the structure

learning in our experiments was satisfactory. Thorough

experimental evaluation of the structure learning is provided

in [Farahmand05A].

B. Cooperative Behavior Co-evolution

In this section, we discuss different aspects of our cooperative

co-evolutionary behavior development scheme. In Section

V.B.1, we present the general framework of cooperative co-

evolutionary mechanism. In Section V.B.2, we give a specific

example of behavior representation that we will use in our

experiments, and show how genetic operators are defined in

this case. We should note that one might define different kinds

of behavior module representations (e.g. neural networks) and

various types of genetic operators based on the specific

problem with which one is dealing.

B.1. Behavior Pools and Fitness Sharing Mechanisms

In contrast to most evolutionary approaches in the

evolutionary robotics community, we do not use a single

population of monolithic behavior modules (or controllers).

We discriminate behavior modules by their supposed role and

make them evolve in their own genetic (behavior) pools. In

this framework, all behavior pools evolve cooperatively to

increase the fitness of agents. Fitness of each behavior pool

directly or indirectly depends on the fitness of the agent. The

relation between these two values is determined by

Uniform/Value-based Fitness sharing mechanisms.

The designer determines the supposed role of each

behavior module by specifying the input and output spaces of

each behavior module. For instance, when one wants to have

an “obstacle avoidance” behavior for the mobile robot, one

may believe that the proximity sensors provide an appropriate

type of input for this task. As mentioned before, it is possible

that the final “overall behavior” of the agent and the way this

specific behavior module contributes to it may be completely

different from what was had expected.

Each genetic pool consists of many individuals. The

“type” of behavior modules between different pools is not the

same, but all individuals in each of those pools describe the

same type of behavior modules. For instance, in one pool we

have individuals for “obstacle avoidance” behavior and in

another pool, we have different individuals evolving to

produce “wall following” behavior. The evolution process for

each pool has no direct interaction with other populations.

Therefore, to have a set of

!

n different possible behaviors, it is

necessary to make a set of

!

n different genetic pools with a

separate evolutionary process in each of them (Fig. 2).

We need a mechanism to encourage cooperation between

behavior modules in the direction of increasing the fitness of

the agent. The mechanism we use to cooperatively co-evolve

behavior modules is inspired by the Enforced Sub-Population

(ESP) [Gomez97] algorithm, and is similar to what are

commonly known as cooperative co-evolutionary algorithms

([Potter00] and [Wiegand04]). Cooperative co-evolutionary

algorithms must be differentiated from competitive co-

evolutionary algorithms where populations explicitly compete

with each other, e.g. predator and prey scenarios [Rosin97].

First, a random behavior module is selected from each

population to make a behavior set

!

B
i

{ }. The agent uses this

set to interact with the environment. The learning procedure

organizes those behavior modules in the architecture

according to the received reinforcement signal (See Section

V.A). It is evident that the performance (i.e. fitness) of the

agent depends on the correctness of its behavior modules. By

“correct”, we mean that each of those behavior modules

performs such that by appropriately arranging them in the

architecture, the agent can do something useful. If all behavior

modules are correct, the agent will find a suitable organization

and perform well. On the other hand, if some behavior

modules act incorrectly and output misleadingly, the fitness of

the agent will degrade.

Nevertheless, the exact contribution of each behavior

module is not known a priori because the agent’s fitness

(which we can measure directly) is the result of the complex

interaction between all the behavior modules and the structure

with the environment. In this paper, we propose two

mechanisms for estimating the contribution of each selected

behavior module based on the fitness of the agent itself:

uniform fitness sharing and value-based fitness sharing.

Uniform Fitness Sharing: As the performance of the

agent is highly coupled with the performance of each of its

behavior modules, we may estimate the fitness of that

behavior module as the average fitness of all agents in which

that specific behavior module contributes. Thus, if a single

instance of a type of behavior module takes part in the

architecture of several agents, say 10, the fitness of that

behavior module is defined as the average fitness of those 10

agents. More precisely, if we define the fitness of an agent

with behavior set

!

B{ } as

!

V
B{ }

Last K episodes
= f{B} Last K episodes

=

E
1

K
rt

t"Last K episode

#
the agent with B{ },

t " Last K episode

$

%
&
&

'

(
)
)

, (14)

each behavior module’s fitness

!

f
u
Bi

j() according to the

uniform fitness sharing mechanism is (

!

u in

!

f
u
 is for

Uniform)

!

f
u
Bi

j() =
1

N
V

B{ }
i Last k episodes

B{ }
i

j

" (15)

where

!

Bi

j
 is the

!

j
th individual from the

!

i
th

 population and

!

B{ }
i

j
s are

!

N uniform randomly chosen sets of behavior

modules in which

!

Bi

j
" B{ }

i

j
. Behavior modules

!

B{ }
i

j
 are

chosen randomly, so it is possible for a specific behavior

module to be selected more often than others. However, by

having enough trials, we become sure that each behavior

module has been involved in a sufficient number of trials and

that the estimated fitness is a good measure of performance.

Note that, like ESP, in our uniform fitness-sharing scheme, we

share fitness to its components according to the overall fitness

of the agent (in our case, the components are behavior

modules, and in ESP they are neurons).

Value-based Fitness Sharing: The uniform fitness

sharing mechanism does not differentiate between different

behavior modules in the architecture when assigning fitness to

the behavior modules. Instead, it considers the fitness of the

whole system and then estimates the fitness of each behavior

module by averaging over the fitness of several agents.

However, if we have some reliable information about the

contribution of each behavior module to the agent’s

performance, we might have a better estimate of each behavior

module’s fitness. Fortunately, this kind of information is

readily available in our structure learning framework.

Considering the way we have defined the Zero-Order

representation, we can express the contribution of each

behavior module in the architecture as:

!

VT (Bi) = P Bi | Lq{ }VqiP Lq is controlling()
q=1

m

" = ˜ V qi

q=1

m

" . (16)

This equation summarizes the contribution of a specific

behavior module

!

B
i
 in all layers of the architecture based on

its conditional value, probability of becoming the controlling

behavior module, and the probability of a layer becoming

controlling. Given that a behavior module may behave

differently in different architectures due to the effect of other

behavior modules, it is wise to average over several agents

with different architectures and sets of behavior modules

!

B{ }
i

j
. In other words,

!

f
v
Bi

j() =
1

N
VT (Bi)

B{ }
i

j

" (17)

with the same definition of notation and parameters as (15) (

!

v

in

!

f
v
 is for the Value-based fitness sharing).

These performance measures are flexible. The designer

can change them in order to accommodate one’s needs. For

instance, one may change

!

K in (14) to include all episodes, so

the measure would be the indicator of lifetime performance, or

one can change it to include only the last few episodes and it

would be the indicator of the ultimate performance of the

agent. The same is true for the value-based fitness sharing

mechanism by changing the way

!

˜ V ij is updated. If we use

!

"n,ij =1 n in (13), it would be an estimate of the average

performance of that behavior module in the architecture.

Moreover, it is possible that fitness estimation follows a

different updating rule from what the learning and structure

selection is based on.

Although our cooperative co-evolutionary method is

similar to usually practiced cooperative co-evolutionary

algorithms ([Potter00] and [Wiegand04]), there are a few

differences. First, we evaluate the fitness of all sub-

components of the solution (i.e. behavior modules of the

agent) simultaneously, as opposed to evaluating the fitness of

a sub-component while fixing other populations. This

simultaneous evaluation and co-evolution is crucial for tasks

where experience is expensive. The other important difference

is the way we assign fitness to those sub-components. The

uniform fitness sharing mechanism assigns the fitness of the

whole solution (i.e. agent’s fitness) to sub-components (and

can be considered more similar to the usual practice of

cooperative co-evolutionary methods), while the value-based

fitness sharing mechanism tries to extract the contribution of

each sub-component in a more elegant way.

B.2. Genetic Operators

Genetic operators should be designed in a compatible

way with the internal representation of each behavior module.

In this work, we use a look-up table representation for each

behavior module and define appropriate genetic operators.

Nevertheless, our approach is not limited to this special look-

up table representation of behavior modules or suggested

genetic operators, and other representations and/or genetic

operators can be used too.

Behavior module

!

B
i
 (and also

!

Bi

j
 which is an instance

from that family) is defined as (See (1))

!

B
i
(" s) : " S

i
" A

i
. (18)

The input space (perception/internal memory) and output

space (action) dimensions and the number of partitions of each

dimension determine the size of this table in our

representation. These dimensions are determined by the

designer.

The function

!

B
i
(s
1
,s
2
,...) can take integer values

between 0 to

!

A
i

. Whenever it takes zero (i.e.

!

B
i
(s
1
,s
2
,...) = 0 for some

!

(s
1
,s
2
,...)" S

i

'
), the output of that

behavior module at that point of input space is NA; the output

is the usual action of the behavior module whenever

!

B
i
(s
1
,s
2
,...) " 0 . As an illustrating example, suppose we have

a behavior module that has a two-dimensional input space and

can output two different actions alongside NA. Assume that

one dimension of the input space can take two values and the

other takes three. A typical instance of this class of behavior

modules is:

!

B
1

=
1 0 2

0 0 1

"

$

%

&
'

We use two different mutation operators for this specific

representation: hard and soft. Hard mutation, which is selected

with probability

!

pmhard
, replaces a behavior module’s matrix

with a totally new random one. Soft mutation perturbs each

matrix and changes some of its elements in order to search

nearby points in the solution space. This change is in the form

of randomly assigning a new action to some random position

of the matrix with probability

!

pmsoft
. For instance, in our

example it can be done by changing the value of position (2,3)

of

!

B
1
 from ‘1’ to ‘0’. The result is the following behavior

module:

!

B
2

=
1 0 2

0 0 0

"

$

%

&
'

The crossover operator is defined as

!

Bi

" j
new

= XBi

j
old

+ X Bi

k
old

 (19)

where

!

X is a random binary matrix with an appropriate

dimension,

!

X is its binary complement, and

!

Bi

j
old

 and

!

B
i

k
old

are two behavior modules selected by the selection mechanism

based on their fitness. The elements of matrix

!

X are coming

from a Bernoulli distribution with probability

!

pc , i.e.

!

P Xij...l =1() = pc . This crossover operator generates offspring

that inherit some elements from both parents.

To show the effect of the crossover operator, take

behavior module

!

B
3
:

!

B
3

=
0 2 0

2 0 1

"

$

%

&
'

The crossover operator first selects a matrix

!

X . The

elements of

!

X are selected randomly with a probability of

!

pc

of being 1. Therefore, if

!

pc is 0.5, we may get a matrix

!

X :

!

X =
0 0 1

0 1 1

"

$

%

&
'

and the result of the crossover operator between

!

B
1
 and

!

B
3

would then be:

!

B
new

= XB
1
+ X B

3

=
0 0 1

0 1 1

"

$

%

&
' (
1 0 2

0 0 1

"

$

%

&
' +

1 1 0

1 0 0

"

$

%

&
' (
0 2 0

2 0 1

"

$

%

&
'

=
0 2 2

2 0 1

"

$

%

&
'

.

 The crossover operator can be symmetric in the sense

that it produces two offspring using the same formula but with

!

X for the first child and

!

X for the second one, or it can be

asymmetric with just one child from both parents.

 It is notable that there is no substantial difference

between our proposed genetic operators and those that are

usually used in genetic algorithms. The conventional operators

usually work on string representation of chromosomes, but

ours operate on matrix representation. For instance, it is easy

to see that the crossover operator is quite similar to the

conventional uniform crossover.

C. Memetic Algorithm

In this section, we propose a culture-based method for sharing

learned knowledge between agents based on a new

interpretation of the memes metaphor. Here, we consider a

meme as a possibly useful piece of knowledge about the

structure of the agent. This knowledge is the result of learning

process of all agents in the society. Based on how well they

have learned the structure, that knowledge is the optimal or

close to the optimal structures. We store these memes in a

place shared by all agents. This place is called culture. In the

experiment section, we see that our memetic algorithm can

improve lifetime performance of agents.

As stated in the Section III.C, memes can be interpreted

and implemented in different ways. The common

interpretation of a meme in the evolutionary computation

community is a local search before/after applying genetic

operators in an evolutionary algorithm (e.g. [Krasnogor05]).

This approach is similar to our hybrid learning/co-evolution

method that was described in Section V.B. Nevertheless, the

idea of a meme “as a unit of information that reproduces itself

as people exchange ideas” [Dawkins76] may be interpreted

and implemented in other ways too.

In our new interpretation, we consider a society of

evolving behavior modules and corresponding agents (as

discussed in Section V.B). We give a set of behavior modules

to an agent and let it start a life. During its lifetime, the agent

learns how to organize those behavior modules in its

architecture. The final learned structure is usually the optimal

or close to the optimal solution for that set of behavior

modules. Instead of throwing away this learned structure, we

can store it in a commonly shared place called culture. Other

agents pick their initial structure from this set of possibly

useful solutions, and then start fine-tuning that structure by the

usual learning procedure (Section V.A). This initial

knowledge may potentially accelerate the learning process by

giving the agent a good initial guess about the possible

optimal structure.

A priori knowledge provided by the culture can be

helpful if all the agents use almost the same sets of behavior

modules. This is not an unrealistic assumption as all the agents

try to find a solution to the same problem. Nevertheless, we

should point out that if the solution space is multi-modal and

the population is diversified around distant optima, a good

structure for a specific set of behavior modules might no

longer be a good guess for another set of behavior modules,

and reusing a previously helpful structure might not be very

helpful anymore.

To be more precise, consider a set of agents

!

agenti{ } .

Each agent in our architecture is defined by two sets of

components: behavior modules and structure, i.e.

!

agenti : Bi{ },Ti() . During the agent’s lifetime, the agent

tries to find a structure that maximizes its received reward (5).

After the agent’s lifetime, the result of learning is an ordered

pair

!

B
i

{ },T
i

*() in which

!

T
i

*
 is the optimal (or close to the

optimal) structure.

We define the culture as a meme pool

!

M where several

different learned structures (memes)

!

T
i

*
s for different agents’

experiences are stored. Not all memes of a culture are the

same. Some of them lead to fitter agents (by giving them a

better initial knowledge) and some do not. We desire that fitter

memes, which are more likely to be better initial guesses for

our agents, have a greater chance to dominate the culture.

Those memes should be more stable and be selected more

often as the initial structure of the agents. Therefore, we

associate a measure of fitness

!

fTi to each meme

!

T
i
. In

summary, our meme pool is defined as the following set:

!

M : Ti
*
, f

Ti
*(){ } (20)

 A meme’s fitness

!

fTi is defined as the fitness of the

agent with the final structure

!

T
i
 (14). To calculate

!

fTi , we

may average over all the agents that have the same resulting

structure over different trials and generations:

!

fTi =
1

N
f Ai()

Ai : Bi{ },Ti()
" (21)

in which

!

N is the number of agents with the structure

!

T
i
.

Adding a forgetting factor helps us deal with the intrinsic non-

stationary nature of the evolutionary approach and/or the

environment:

!

fTi n+1

= 1"#Ti() fTi n +#Ti
f A() A : Bi{ },Ti() (22)

The meme pool has a limited size – the cultural diversity

is finite. If it has enough capacity, adding newly generated

memes is trivial. If the result of the learning is already in the

meme pool, its fitness is updated according to (22). Finally, if

there is a new meme with a high fitness, it replaces the least fit

meme, i.e. a meme

!

T
i
 with the lowest

!

fTi in

!

M .

Metaphorically, this is somewhat similar to human culture

where old and unsuccessful traditions are gradually replaced

by new and successful ones. Moreover, as time passes, the

prominence of a tradition changes gradually according to its

usefulness to the current condition of the society.

If the meme pool

!

M is not empty, the newborn agent

acquires a meme according to the fitness

!

fTi of each meme.

Otherwise, the agent picks a randomly chosen structure. In this

paper, we have implemented a proportional scaled fitness

selection mechanism as our meme selector, i.e. scaled roulette

wheel selection mechanism. The agent starts interacting with

the environment with the selected meme as its initial structure.

If the agent receives reward, the hypothesis that this structure

is suitable strengthens. If it receives punishment, the agent

changes the structure using our proposed structure learning

method (Section V.A.). Also the agent explores its structure

space by occasionally selecting randomly chosen structures. In

this way, the chance of getting trapped in a local optimum of

the structure space decreases.

The culture-based meme transferring mechanism

conveys the learning experience of a generation to the next

one. This may induce some unwanted bias. Nevertheless, our

approach has several stochastic elements that help with

escaping from local minima. One element is the randomness

in the structure learning procedure that we have just described,

and the other is randomness in the genetic operators. These

reduce the chance of undesirable effects of the culture-based

approach.

 To summarize, in our behavior-based system design

framework the agent uses three sources of adaptation for its

development process. The first is a cooperative co-

evolutionary mechanism in which agents’ behavior modules

are evolved in different genetic pools. Genes compete with

each other according to the fitness of the resulting agents. In

the second mechanism, the culture acts as initial knowledge to

the newborn individuals by providing memes. The meme is

the result of the agent’s ancestors’ experiences. The third

mechanism is the structure learning process. This process

adapts each individual structure in the direction of maximizing

the agent’s performance given a set of inherited behavior

modules. The agent starts its search from a point that its

culture suggests.

VI. EXPERIMENTS

To show the effectiveness of our methods, we apply them to

two benchmark problems. One of them is a carefully designed

general abstract problem and the other is a simulation of a

real-world multi-robot object-lifting task that has been solved

and tested empirically using a hand-designed SSA [Nili01].

The abstract problem is used to show the effectiveness of the

proposed methods in a controlled, and well-defined situation,

while application of our methods in the object-lifting task

shows their power in real-world and complex situations. In

both problems, we compare the performance of behavior co-

evolution/fixed structure with behavior co-evolution/structure

learning. Whenever we use structure learning, we compare the

performance when (1) there is a meme-induced initial

knowledge and when (2) the agent starts from a random initial

structure. Also we examine the effect of our two proposed

fitness sharing mechanism on the performance of the agent.

Before discussing the results, it should be mentioned that we

have not optimized parameters of the learning and

evolutionary methods (e.g. learning rate, exploration rates,

population size, etc.); therefore, even better results are

possible.

A. Abstract Problem

The goal of the abstract problem is to show the ability of the

agent to learn an optimal policy by interacting with a general

random environment. The abstract problem is specified by a

random finite state/finite action “desirable” policy

!

a
*

="(s)

in which

!

s" 1,2,...,m{ }# 1,2,...,n{ } and

!

a
*
" 1,2,...,q{ } . This desirable policy is essentially a

randomly generated integer matrix.

 The goal of the agent is to find a policy

!

" agent
 that has

the minimum distance to

!

"(s) by interacting with the

environment. Since the agent’s policy depends on the evolved

behavior modules and learned structure, this problem can be

thought of as finding the right structure and set of behavior

modules by structure learning/behavior co-evolution processes

to estimate an integer-valued matrix.

A.1. Performance Measure and Reinforcement Signal

 The distance in the action space is defined as

!

"(s) #$ (s) =
0 if "(s) = $ (s)

1 otherwise

%
&
'

 (23)

and the total distance over all the state space is

!

"#$ = "(s) #$ (s)
s%S

& . (24)

A normalized measure of distance between the learned

policy and the optimal solution can be defined as

!

P(error) =
1

S
"#$ (25)

which is a good indicator of the system’s performance

whenever the probability distribution of visiting states in the

problem space is uniform. Note that the agent does not know

the optimal policy and must learn it, i.e. it cannot calculate

(25).

The agent starts with a randomly chosen architecture

!

T

in which behavior modules are selected from a behavior

module repertoire. The repertoire consists of behavior

modules selected from corresponding behavior (genetic)

pools. The agent confronts with a random state

!

s and

responds with action

!

a based on the behaviors’ organization

and each behavior module’s policy

!

B
i
(s

i
) . If the agent

chooses the correct action compared to the optimal solution

!

"(s) , it receives +1 reward and otherwise it receives a -1

punishment:

!

r(s) =
+1 if "(s) = # agent

(s)

$1 otherwise

%
&
'

 (26)

where

!

" agent
(s) is the selected action of the agent

considering all behavior modules and the organization of them

in the architecture. Each such interaction defines an episode in

the abstract problem. The goal of structure learning problem is

finding an agent that minimizes (25). This problem is

equivalent to maximizing the average received reward.

Therefore, we define the agent’s fitness as the average of the

reinforcement signal received during several interactions with

the environment.

A.2. Experiment Setup

In our experiments, we have chosen a 5x5 problem space

with seven actions. This means that the optimum solution is an

element of a space with size

!

7
25
("10

21
) . We define seven

behavior modules

!

B
i
 (i =1,...,7) each of them excites

everywhere in the problem space. Each behavior module

!

B
i
’s

output is selected from the set of

!

a
i
,NA{ } (i.e. behavior

module

!

B
i
 can only selects either a NA or

!

a
i
). It is evident

that to find

!

" , each behavior module must evolve and find

the correct mapping

!

B
i
(" s) : " S

i
" A

i
 which selects

!

a
i

whenever

!

"(s) = a
i
. Note that it is not always necessary for

behavior module

!

B
i
 to select NA in cases that

!

"(s) # a
i
. For

instance, if

!

B j is in an upper layer of

!

B
i
 and

!

"(s) = a j , no

matter what

!

B
i
(" s) is, the agent outputs correctly if

!

B j

become the controlling behavior. Note also that the search

space of our behavior module decomposition is much smaller

than the original space (order of

!

2
25
("10

8
) for each

behavior module).

As all behavior modules have the same input space and

all of them can become activated in all states of that space,

there exists a mapping

!

B
i
(" s) : " S

i
" A

i
 for each combination

of behavior modules

!

T that solves the problem optimally. In

other words, the correct mapping can ultimately be found

using a proper evolutionary mechanism regardless of the

organization of those behavior modules - if all necessary

behavior modules are in the architecture. However, this

mapping depends on the organization of behavior modules and

if the structure frequently changes, the performance of the

agent would degrade. Therefore, a good way to solve the co-

evolutionary problem in this experiment is fixing the structure

and evolving behavior modules. Note that the method is not

aware of this special property of the abstract problem.

In our simulations, we have seven behavior pools for our

behavior modules

!

B
i

{ }; i =1,...,7. Each behavior module

!

B
i
 has a 25-dimensional input space. The population size of

each behavior pool is 30. In order to estimate the fitness of any

individual in each behavior pool, we pick a bunch of behaviors

from all behavior pools according to their fitness, and then

evaluate the agent’s fitness. We do this procedure 300 times in

each generation. Having these agents’ fitness, we estimate

behavior modules’ fitness using equations (15) or (17) for the

uniform fitness sharing mechanism and valued-based fitness

sharing mechanism, respectively. To evaluate each agent’s

fitness, we let it interact with the environment. Here

interaction means that a random state from the optimal policy

matrix is given to the agent, and depending on its guess, the

agent will receive a reward +1 or punishment -1. The agent

has a lifespan of 100 episodes. During those episodes, it learns

the correct structure using the proposed structure learning

method in the experiments where the structure learning is

present, or it just evaluates the performance of the current

behavior modules set. In cases that we use our memetic

algorithm, we set the culture size (the cardinality of

!

M) to 5.

Results reported in this experiment are the aggregation of

three runs. Other details of the experiment are shown in Table

1.

A.3. Experiment Results

Uniform vs. Value-based Fitness Sharing Mechanism:

Our first result is depicted in Fig. 5. It compares the

performance of uniform and value-based fitness sharing

mechanism. The reported performance measures are the

average fitness of the population and the fitness of the best

individual in the population. The optimal solution, which

selects the correct answer every time, and the random solution,

in which all behavior modules

!

B
i
 select randomly between

action

!

a
i
 and NA with the same probability, are also shown.

In this figure, we do not use a meme as an initial knowledge of

the structure and all structures are selected randomly at the

beginning of the agent’s lifetime. Note that all results of this

paper report the fitness of the agent and not the fitness of

behavior modules. This makes comparison between different

fitness sharing mechanism meaningful.

It is seen that the evolutionary method that uses the

value-based fitness sharing performs better than the one that

uses the uniform fitness sharing. The best solution of the

value-based method reaches close to the optimal solution. The

average fitness of the random behavior architecture is much

lower than others and is close to the performance of the first

generation of evolving systems.

The fitness of the random case can be calculated in two

ways: analytical and numerical. In the numerical method, we

simulate an architecture with random behavior modules and

structure several times. The result shown in the figure is

obtained in this way. The average fitness can also be

calculated analytically. If we define random behavior module

as a behavior

!

B
i
 which selects NA and

!

a
i
 with the same

probability:

!

P(a
i
= B

i
(s)) = P(NA = B

i
(s)) "s# S (27)

the expectation of the received reinforcement signal is

!

E
"
random

r[] =
1

m

1

2
i
(1) + 1$

1

2
i

%

&
'

(

)
* # ($1)

%

&
'

(

)
*

i=1

m

+

=
1

m
2

1

2
i

i=1

m

+ $m
,

-
.

/

0
1

 (28)

where

!

m is the number of layers (behavior modules). The

first term in the parentheses (including

!

1
m

) shows the

average received reward from the

!

i
th

 layer. Now, consider the
th
i layer. In order to have the correct response, its higher

behaviors must choose NA (each with probability of

!

1
2) and

the

!

i
th

 layer must select

!

a
i
 (with probability of

!

1
2). The

second term in the parentheses shows the amount of

punishment signal received by each layer. This average fitness

is -0.7165 for 7-layer architecture.

Superiority of the Value-based Fitness Sharing

Mechanism: The reason for the superiority of the value-based

fitness sharing method to the uniform counterpart in this

problem is the ability of the former method in extracting more

useful knowledge from the agent’s experiments. In this

problem,

!

V
T (B

i
)
 (16) estimates the contribution of each

behavior module in the overall performance of the agent

precisely. The uniform fitness sharing neglects this knowledge

by assigning the same fitness to all behavior modules.

This is possible because the agent’s fitness is the

summation of each behavior module’s contribution to the

fitness (which is captured by the value-based fitness sharing

mechanism). In this specific problem, any increase or decrease

in the behavior module’s fitness has direct effect to the agent’s

fitness. In other words, if the fitness of a behavior module, as

defined in (17), were increased/decreased, the fitness of agents

that have this behavior in their architecture would

increase/decrease in average (14). In this problem, it is not

possible that the increase in the fitness of a behavior module

!

B
i
 decreases the fitness of another behavior

!

B j , i.e. they do

not compete with each other. This property is not common in

all problems, so this superiority of the value-based method

may not be seen in all the cases. We see that our object-lifting

problem is an example of such a problem (Section VI.B).

The question of which of these two fitness sharing

mechanism works better depends on the problem and the way

behavior modules are designed. If they do not usually compete

with each other for resources (i.e. they become excited in

different regions of state space or their output space are

separate), we can expect that the value-based fitness sharing

mechanism perform better. On the other extreme that they

always compete with each other, the uniform fitness sharing

mechanism may perform better.

Learning and Co-evolution (Uniform) - Meme vs. no

Meme: We perform a series of experiments to investigate the

effect of hybridisation of learning and co-evolution. In Fig. 6,

we compare the performance of fixing the structure (hand-

designed structure), learning the structure, and learning the

structure with the help of our memetic algorithm when

behaviors are co-evolved using the uniform fitness sharing

mechanism. It is important to note that the fixed structure case

needs designer’s prior knowledge about a good solution of the

behavior organization problem. Therefore, the fixed structure

case and the learning structure cases are not directly

comparable because they do not use the same amount of a

priori knowledge. In this paper, we report the result of fixed

structure case along the learning cases because it shows the

extent to which the structure learning alone can come close to

the knowledge the designer might have a priori in some cases.

Based on Fig. 6, the fixed structure case performs better

than structure learning methods in early generations but its

performance is lower after generation ~110. Note that in this

problem, the correct structure is not unique, but it depends on

the ordering of behavior modules in the architecture.

Therefore, fixing a structure confines behavior modules to be

evolved for that specific configuration and reduces the

unnecessary (in this case) exploration in the solution space. As

a result, the fixed structure performs better than the other

methods in the early stages of evolution. However, after

decreasing the high amount of diversity in the behavior pools,

the correct structure for the given set of behavior modules is

learned. It is also seen that the case that uses meme-induced

prior knowledge performs better than the case without that

knowledge in the later generations. This shows that estimating

the correct structure and starting from the culture in the

learning process is beneficial for the agent. In addition, it

shows that the behavior pools have almost converged to

similar solutions; so sharing the structure knowledge through

the meme pool can usually help in increasing the agent’s

fitness.

In Fig. 7, the histogram of the probability distribution of

the agents’ overall fitness in several sample generations is

shown when the uniform fitness sharing is used. This figure

shows the empirical distribution of fitness among all agents

that are produced using evolved behavior modules in a

generation. In other words, if one randomly picked a set of

behavior modules from genetic pools in a generation, say

generation number 100, and made an agent with them and let

the agent learn the correct ordering of behavior modules based

on the received reinforcement signal, the fitness of the agent

would follow this distribution. For instance, the probability of

having a fitness greater than 0.5 is a little less than 0.1 for the

meme-induced method and a little more than 0.1 for the fixed

structure. These results are based on the aggregation of agents’

fitness in three runs.

The empirical cumulative probability distribution of the

agent’s fitness is shown in Fig. 8 (formally, it is

!

P(Agent's Fitness "#)). The right-side tendency of these

diagrams shows the higher chance of having high performing

evolved/learned agents. It is seen that in the first generation,

all agents are performing poorly. Those agents that use

learning are slightly better than those with the fixed structure

because they can find a structure that gains more from those

randomly generated behavior modules. In the later

generations, the diagrams tend to the right-hand side, which

shows that more capable agents are being produced. In early

generations (e.g. generation 20), the fixed structure case is

superior, but after a while all of them become almost the same

and eventually agents that use structure learning perform

better (generation 200). As before, meme-induced agents

outperform all others in the late stages of evolution. The

reason is that it can benefit from previous experience of other

agents with similar set of behavior modules. These results are

based on the aggregation of agents’ fitness in three runs

Learning and Co-evolution (Value-based) - Meme vs.

no Meme: A similar comparison for the value-based fitness

sharing is shown in Fig. 9. It can be seen that the case with a

fixed structure reaches very close to the optimal solution.

Those cases that learn the correct structure, and do not benefit

from designer’s a priori knowledge about the special structure

of this problem, perform somewhat worse than the fixed case,

but their performances are still significant. Meme-induced

agents perform better than those without it. Fig. 10 and Fig. 11

show the empirical probability distribution and the empirical

cumulative probability distribution of the agents’ fitness

during some sample generations respectively. It is seen from

those figures that the fixed structure case is superior in the

early generations, but the difference reduces in the latter

generations. In addition, the performance difference between

with-meme and without-meme agents is noticeable.

 Steep plots in Fig. 11, especially in later generations,

show that the produced agents’ fitness is very close to one. As

the fitness of “one” corresponds to the global optimal solution

of the abstract problem, this figure shows that most of the

produced solutions are very close to the global optimal of the

problem.

Summary: In this experiment the value-based fitness

sharing mechanism estimates the fitness of each behavior

module precisely. Having such conditions is not common for

all problems. Also for this problem, we can always find a

behavior module’s mapping for every ordering of behavior

modules in the structure. In this case, whenever the structure

learning method suggests a change in the structure, it would

disturb co-evolution of behavior modules. Meme transfer

reduces this disruptive effect of learning by suggesting initial

structures that had performed better with the current sets of

evolved behavior modules. This effect is more prominent in

the later stages of evolution where all behavior modules in a

single behavior pool are more or less similar.

B. Multi-Robot Object Lifting

Although the abstract problem shows the efficiency of our

proposed methods, it is desirable to tackle a real-world

problem by our methods and study their performance. We

chose a cooperative multi-robot object-lifting problem as our

second test-bed. Hand design of behavior-based controller for

those robots was very difficult, but it resulted in a very

successful controller for both simulations and real-world

experiments [Nili01]. Nili et al. hand-designed the behavior

modules and structure by exhaustive trial and error on a real-

world setup. In this experiment, we simulate the cooperative

object-lifting task based on the kinematics of the robots and

the object as introduced in [Nili01]. Before discussing the

details of our method, we briefly introduce the problem. For

more information, see [Nili01].

B.1. Introduction to Multi-Robot Object Lifting

Imagine a situation in which a group of robots must lift a

bulky and large object (Fig. 12). The object is of such a size

and shape that none of the robots can grasp it directly. Then, a

fork lifting mechanism is suitable for handling the object.

When lifting the object, based on the relative position of each

robot to the object's centre of gravity, the required force may

vary from one robot to another, which introduces

heterogeneity in the robots’ team. Consequently, each

individual robot must have the ability to do its job under a

range of external loads. In addition, when the object is tilting,

each robot must move to prevent sliding at its contact point

with the object. If some compliance is provided at the end

effector (in the plane parallel to the object's lower surface) and

the tilt angle of the object is kept small enough, there is no

need for the robot to move while lifting the object. Keeping

the inclination angle of the object within a specified range will

also prevent collision between the object and the lifting robots.

To keep the object stable when lifting or moving fast on

a rough or curved path, the object configuration must be such

that the Zero Moment Point (ZMP) remains in the closed area

having the object/robot contact points as its vertices.

Considering the object's maximum acceleration and possible

position of its centre of gravity, one can find the object’s angle

at the point when the ZMP comes to the border of the

supporting area. If the robots keep the object’s angle in the

range obtained from the above estimation, the object will be

stable. Therefore, if the tilt angle of the object is maintained

within a specified value, then the robots are not required to

move, the object will not hit the robots, and the system is

stable. Moreover, it has been assumed that each robot is

capable of measuring the object's angle in its own coordinate

system, which can be estimated by each robot.

In the followings, we denote

!

z(k) as the height of the

robot-object contact point,

!

v(k) as its elevation velocity, and

!

"(k) as the object’s tilt angle at time step

!

k (all of these

quantities can be measured locally, see [Nili01] for details).

Hand-designed behavior modules and structure, whenever

they are used, are selected similar to [Nili01] (See Table 2 for

the description of hand-designed behavior modules). Results

of this paper are obtained with

!

"v =1,

!

v
max

= 5 ,

!

zgoal = 3,

!

"
0

= 5
o
, and

!

"T = 0.005 as the simulation time step.

In summary, the problem is cooperative lifting of an

unknown object to a set-point while keeping the object’s tilt

angle small with no central control or communication among

the robots. We compare cooperative co-evolution of behavior

modules with a priori known structure and without that

knowledge (the structure learning case). In the latter case, the

agent should learn the structure of behavior modules during its

lifetime. In our experiments, we study the performance of both

fitness sharing methods (uniform and value-based). Moreover,

the effect of the proposed memetic algorithm on the

performance of learning is investigated too.

B.2. Performance Measure and Reinforcement Signal

There are two major methods for formulating the optimal

solution for a learning system. The first one is defining the

solution directly –as it is done in supervised methods- and the

second method is coding it in the reinforcement signal. The

first method is not possible in many practical situations.

Therefore, indirect formulation of desired properties of the

solution in the reward function is the only practical way.

Nevertheless, one of the most important problems in

reinforcement learning is the problem of reinforcement signal

design ([Dorigo94], [Dorigo97], and [Ng99]). The problem

can be quite difficult whenever the task under investigation is

complex and the agent must satisfy a few objective functions

together. However, reinforcement signal design is in general

much simpler than defining the goal state. There is no general

rule to design an appropriate reinforcement function that

satisfies the designer’s desiderata; and in most problems it is

selected by trial and error. We have found that the

reinforcement signal (29) (in Table 3) satisfies our goals*. This

reinforcement signal is designed in a way that reflects the

objectives of our problem, and is similar to the way a designer

would design the hand-designed controller.

It is notable that the reinforcement learning community

generally believes that the reward function is the most robust

and transferable definition of the task [Ng00]. Therefore,

spending some time to find a suitable reinforcement signal and

then letting the agent learn the correct policy seems to be a

better choice than trying to explicitly design a non-transferable

policy.

Explaining the Reinforcement Signal: In order to

clarify the reinforcement function (29), we discuss its terms.

Relation (30) rewards reducing tilt angle and punishes a

movement that increases it. This part of the reinforcement

signal specifies the goal of keeping the object’s tilt angle

small. Relation (31) rewards robots being in small tilt angle

and punishes large tilt angles. Note that it rewards low tilt

angle in early stages of the episode more than in late stages

and punishes high angles in the later times more than in the

beginning in order to enforce quick convergence to a

satisfactory angle. Relation (32) rewards the robot’s closeness

to the goal and punishes the robots far distance from the goal

and relation (33) punishes the robot’s passing the goal. It is

obvious that these two parts of the reward function force

satisfying the other goal of our problem which is moving the

object to a specified height and keeping it there. And at last,

relation (34) punishes a behavior that makes the robot move

too fast.

Fitness and Lifetime Fitness: To evaluate the

performance of different methods, we compare their obtained

reinforcement signals. Two different overall fitness measures

are defined: 1) fitness of the agent in the last few episodes of

its lifetime and 2) fitness of the agent in all episodes (lifetime

*
 Reinforcement signal applies to the current robot.

Therefore, values like

!

z(k) and

!

v(k) must be interpreted as

the value of the position and velocity of the current robot’s

contact point, respectively.

fitness). The first measure shows the ultimate performance of

the agent while the second one shows its performance during

the whole lifetime. It is desirable that these two measures have

large values and be close to each other. If the lifetime fitness is

much smaller than the other, it shows that the agent performs

badly in its early lifetime, but ultimately the agent learns how

to organize its behavior modules correctly.

We described the way each behavior module’s fitness is

calculated using one of the proposed fitness sharing methods

in Section V.B.1. In the uniform fitness sharing method, the

average fitness of the agent in the last few episodes (14) is

given to all behavior modules (15). In the value-based fitness

sharing,

!

V
T (B

i
)
 (16) is given to behavior

!

B
i
 according to (17).

In computing

!

V
T (B

i
)
, we use a weighted average of

reinforcement signal weighted by discount factor

!

"episode

str
 like

the one we defined in (12). In this way, all episodes have

effect on the behavior module’s fitness, but the effect of later

episodes are more important. Note that with our choice of

!

"episode

str
, this measure is not exactly the same as the average

reinforcement signal of the last few episodes but is close to it.

Nevertheless, the agent’s fitness is calculated as before, i.e. the

average performance of the agent over the last few episodes.

B.3. Experiment Setup

We make five genetic pools, each for a family of

behavior modules, i.e. {“push more”, “do not go fast”, “stop at

goal”, “hurry up”, “slow down”}. State and action spaces of

behavior modules are defined as in Table 4.

The crossover rate

!

pc is fixed in our experiments, but

mutation rates (

!

pmhard
 and

!

pmsoft

) are decayed during

evolution. We turn mutation off in the last few generations in

order to reduce the noise in the fitness values.

In our experiments, each genetic population has 20

individuals, and we pick 200 random sets of behavior modules

in each generation to evaluate the fitness of behavior modules

(the distribution of this random selection is according to the

fitness of behavior modules). This means that each instance of

behavior module is involved in an average of 10 different

agent architectures. This is the number that is used in

equations (15) and (17) (though we use the exact number of

times each behavior instance has been involved and not the

average number).

Each learning agent has 25 episodes to find a suitable

structure. The fitness is defined based on the average of the

reinforcement signal for the last five episodes. This fitness is

directly used for the uniform fitness sharing mechanism. For

the value-based fitness sharing mechanism, we use values that

are obtained during learning (

!

V
T (B

i
)) as in (16) to

approximate the fitness. In the case that the agent does not

learn the structure (i.e. hand-designed structure), we give 5

episodes for estimating the fitness of the agent. In this case,

fitness and lifetime fitness are the same. Note that this is just

fitness (and not lifetime fitness) that enforces selection

pressure.

For our memetic algorithm, we use a small culture size

of five. Also as a reminder, the results of this experiment are

the aggregation of fitness during several runs with different

random seeds. Details of the experiment setup can be found in

Table 1.

B.4. Experiment Results

Our first result on the performance of our methods for

object-lifting task is depicted in Fig. 13. The figure shows the

average of the population’s fitness (vertical axis) through

generations (horizontal axis). Remember that the agent’s

fitness is the sum of reinforcement signals that it receives in its

last five episodes. It is notable that in this figure, we do not

present the best agent of each generation as they are very close

to the hand-designed cases from the early generations.

General Comparisons (Co-evolution vs. No Co-

evolution – Uniform vs. Value-based Fitness Sharing

Mechanism – Learning vs. No Learning): In Fig. 13, we

compare the performance of the agent that uses (1) hand-

designed behaviors/hand-designed structure, (2) hand-

designed behaviors/learning structure, (3) behavior co-

evolution with the uniform fitness sharing mechanism/learning

structure, and (4) behavior co-evolution with the value-based

fitness sharing mechanism/learning structure. We expect that

if the co-evolutionary mechanism performs well, the fitness

will increase through generations.

Let’s emphasize that the hand-designed behaviors and/or

structures use extra knowledge provided by the designer. This

knowledge, which is a partial solution of the problem, is not

usually available. Therefore, directly comparing these cases

without noting their fundamental difference is not fair.

Nevertheless, as a reference measure, we provide the result of

hand-designed behavior module and hand-designed (fixed)

structure case as a flat line. In this case, nothing is evolved or

learned. This flat line shows what we would achieve if we rely

on our human designer. Subjectively, a human observer

evaluates the performance of this setting as quite compelling

since it always achieves our goal smoothly. This design is the

same as the one that has been done for the same task with real-

world robots in [Nili01].

Learning vs. Hand-Designed Structure: The other case

is where we use the set of hand-designed behavior modules,

but we let the agent learn the structure itself. Here, we do not

have any evolutionary mechanism, so the result is again

shown as a flat line. We observe that the average fitness of the

learning agent (with pre-designed behavior modules) is very

close to the hand-designed agent. This is interesting because

even though the agent has less prior knowledge (the

knowledge of “correct” structure is not given to it), it can

perform competitively. Note that the results’ variance is higher

in the structure learning/hand-designed behaviors compared to

the fixed structure/hand-designed behaviors. The source of the

extra variance is the learning procedure. The learning

procedure starts from an initial structure that is most probably

not the same as the optimum one; so the agent suffers some

punishments before learning the optimum or close to optimum

structure. This produces variance in the fitness. Also the

structure learning does not necessarily find the optimum

structure by the end of the agent’s lifetime, and this, too, adds

some extra variance.

Co-evolution and Learning vs. Human Design: By

studying behavior of co-evolution/structure learning in Fig.

13, we observe that even though they use less prior knowledge

compared to the hand-designed cases, they achieve

comparable fitness. Indeed, the performance of co-

evolutionary method with the uniform fitness sharing

mechanism approaches the performance of the hand-designed

solution very fast.

Superiority of the Uniform to the Value-based Fitness

Sharing Mechanism: The other observation is that in contrast

with the abstract problem, the performance of the uniform

fitness sharing is better than the value-based one. The reason

will be clearer if we give an example.

Suppose at some moment of time, the agent’s structure is

T = [... PushMore Stop] (“Stop” at the top layer, and “Push

more” in the second layer). Also assume that by initialization

or by the process of cooperative co-evolution, these two

behavior modules are the same as the hand-designed behavior

modules as defined in Table 2.

The definition of “Push more” behavior module in Table

2 implies that it is always activated, so it does not let lower

layers’ behavior modules become the controlling behavior of

the agent. In this special structure and behavior modules

setting, either “Push more” or “Stop” would control the agent

no matter what other behavior modules there are in the lower

layers of the agent. The consequence is that the value of all

behavior modules

!

V
T (B

i
) except these two would not change

during learning. Therefore, value-based fitness sharing

mechanism would not assign a meaningful fitness to any

behaviors except these two (See (17)).

 Whenever the initial tilt angle of the object is not very

large, these two behavior modules can indeed stabilize the

object and receive a good amount of rewarding signal (though

not the maximum possible amount), which leads to rather high

fitness values for them. Because they are not punished and

even they are rewarded, they do not try to evolve in such a

way that other behavior modules find the possibility to

become activated in this specific structure (e.g. this can be

done by some changes in “Stop” behavior module). The The

result is that there would be no selection pressure for all other

behavior modules, and no teamwork would be encouraged.

 In summary, the value-based fitness sharing leads to

somewhat selfish behavior modules. If this selfishness

produces conflicts among them, it may hurt the agent’s

performance. In some cases, however, all behavior modules

can cooperate to solve a problem with little adversarial effect

on others (the abstract problem is an example of this case).

The same effect is seen in multi-agent credit assignment with

AND-Type and OR-Type tasks [Harati07].

Uniform Fitness Sharing Mechanism - Meme vs. No

Meme: Now we study other aspects of our methods in more

details. In Fig. 14, we study the effect of using/not using

memes whenever behavior fitness is assigned by the uniform

fitness sharing mechanism, and we compare the average

fitness and lifetime fitness of the agent in different situations.

As before, we depict hand-designed behavior modules

with/without structure learning for comparison purposes (the

fitness and lifetime fitness of hand-designed

behavior/structure is the uppermost solid line; the fitness of

the hand-designed behavior/learning structure is the second

uppermost solid line, and its lifetime fitness is the dashed

line).

We see in Fig. 14 that in the last five episodes, average

fitness of all behavior evolution cases is almost the same and

is close to the hand-designed behaviors/structure case (fitness

curves are shown in solid lines). This shows that the co-

evolutionary mechanism can actually find good solutions for

the behavior optimization problem. Also the average

performance of the cases “with structure learning” is almost

the same as the average performance of the hand-designed

structure. This shows that the structure learning can find a

good solution to behavior organization problem.

Effect of Meme on Lifetime Fitness: Comparing

lifetime fitness of different methods, we expect a drop in

lifetime fitness whenever the agent should learn the structure.

This is because whenever we are learning, we are exploring

different structure possibilities (especially in early stages of

learning), and many of those possibilities may not be so good.

However, comparing the lifetime fitness of “with meme” with

“without meme” cases show an interesting phenomenon: the

meme-induced case performs much better than the case

without meme (these are shown in dashed lines). In fact,

having a meme pool prevents wasting useful knowledge

learned by other agents. Note that in the meme-induced case,

the designer does not use any a priori knowledge about the

correct structure of the agent, and the method itself benefits

from other agents’ previous experiences.

In Fig. 15, we show the histogram of the empirical

probability distribution of the agent’s fitness in a few sample

generations when we co-evolve the behavior modules and use

(1) hand-designed structure, (2) structure learning without

meme, and (3) meme-induced structure learning. In this figure,

we use the uniform fitness sharing mechanism. Note that the

agent’s fitness may be different from behavior modules’

fitness when we use the value-based fitness sharing

mechanism, but in this case both of them are the same†.

We see that in the early generations (e.g. Generations 1

and 5 in Fig. 15) those cases that learn the structure perform a

bit better than the one with a hand-designed (fixed) structure.

The reason is that the structure learning method can exploit

any available information that comes from mere randomness

(in Generation 1) or diverse behavior modules (in Generation

5) by re-arranging them in the structure. In later generations,

however, a hand-designed structure case produces more

highly-fitted agents compared to the structure learning cases.

This is intuitive because the hand-designed structure case has

more prior knowledge about the problem and also it is easier

†
 For more information about this type of figure, refer to

the explanation of Fig. 7 in the Abstract Problem section

(Section VI.A.3).

for the co-evolutionary mechanism to find a suitable behavior

for a fixed structure. In spite of that, the performance of agents

with structure learning is comparable to the hand-designed

structure agents. In Fig. 15, we observe that the meme-induced

case generates slightly more highly-fitted agents compared to

the case without using a meme.

In Fig. 16, the same kind of histogram is shown for the

agents’ lifetime fitness. The superiority of meme-induced

cases to the without-meme case is evident: memetic algorithm

increases the chance of producing high-performing agents

(lifetime fitness). These results show where our memetic

algorithm can be most helpful: increasing the lifetime

performance of the agent which is very important when

dealing with real systems.

The empirical cumulative probability distributions of

agents’ fitness (solid lines) and agents’ lifetime fitness (dashed

lines) are shown in Fig. 17‡. In the first generation, agents that

use structure learning tend toward the right-hand side

compared to the hand-designed structure case (for both fitness

and lifetime fitness measures). This means that in the first

generation, agents that learn the structure (both with and

without meme) perform better than the hand-designed

structure agents on average.

Comparing the fitness measure, the hand-designed

structure gradually outperforms the other two by a slight

margin. The difference is much larger for the lifetime fitness

since the lifetime fitness considers all early learning episodes

where the agent tries to find the correct structure and fails.

However, this difference is much smaller for the “with meme”

approach compared to “without meme” case. Also we see that

the lifetime fitness of meme-induced structure learning agents

is much better than those without a meme. This, again,

confirms our intuition that we can benefit from using a

memetic algorithm to transfer learned knowledge.

Value-based Fitness Sharing Mechanism - Meme vs.

No Meme: We do the same kind of comparisons for the value-

based fitness sharing mechanisms in Fig. 18-21. In Fig. 18, we

show the population average of fitness during generations

when the value-based fitness sharing mechanism is used.

Again, we compare the fitness of our evolutionary

mechanisms with/without meme-induced knowledge with the

hand-designed behaviors/hand-designed structure, and hand-

designed behaviors/learned structure (without meme). Note

that in the following figures we report the agent’s fitness and

not the behavior’s fitness, which is a different measure.

The average fitness of the value-based fitness sharing

mechanism is generally smaller than that of the uniform

fitness sharing mechanism. We discussed this point when we

explained results shown in Fig. 13. Nevertheless, we see the

same pattern here: average fitness of meme-induced case,

especially lifetime fitness, is higher than the case where we do

not use memes.

‡
 For more information about this type of figure, refer to

the explanation of Fig. 8 in the Abstract Problem section

(Section VI.A.3).

In Fig. 19, the histogram of the empirical probability

distribution of the agent’s fitness in a few sample generations

is shown. We do comparisons similar to what we did for Fig.

15. The same kind of histogram for the lifetime fitness of the

agent is depicted in Fig. 20. Here, we see similar patterns. The

performance of the learning agent in early generations is better

than the performance of a hand-designed structure agent.

Ultimately, the hand-designed structure agents outperform the

agents that learn the structure.

We show the empirical cumulative probably distributions

of agents’ fitness (solid lines) and agents’ lifetime fitness

(dashed lines) in Fig. 21. The pattern of results is almost the

same as in the uniform fitness sharing mechanism case. We

observe, however, some slight differences too. For instance,

compare the distribution of fixed structure between Fig. 16

and Fig. 20. In Fig. 16, we observe an increasing

concentration of probability toward the high-end of the fitness

distribution. This means that almost all agents have very high

fitness values. On the other hand, in Fig. 20, it seems that

there are two peaks of fitness probability (one close to the

high-end around 300 and the other around 240). This implies

that not all agents have the highest achieved fitness, but there

are two groups of agents with significantly different amount of

fitness. Similar result can be observed by comparing Fig. 17

and Fig. 21. The curve for the fixed structure is more or less

convex in Fig. 17 (especially in later generations), but it is not

in Fig. 21. This may suggest that the value-based fitness

sharing mechanism leads to clusters of individuals: one cluster

with a very high fitness individuals and the other with a

somewhat lower fitness values. Whether this observation is

statistically meaningful or not needs further investigation.

Learning and Fast Adaptation to the Environment‘s

Changes: In the introductory part of Section III, we explained

that changing the structure leads to faster adaptation of the

overall behavior of the agent compared with changing the

behavior modules. This is very important whenever the agent

deals with non-stationary environments. Although we have not

intentionally changed the dynamics of the environment or the

agent’s goal, we can still observe this property in our results.

Consider Fig. 17 and/or 21. These figures show the

cumulative probability distribution of fitness in several sample

generations. The agent does not have any previous knowledge

about the environment in the first generation since all behavior

modules are assigned randomly. This situation is like an

abrupt change in the environment where the function of

behavior modules is almost irrelevant to the appropriate

function for the current environment. If we expect that

learning the structure is helpful for fast adaptation to a new

environment, the agent with structure learning should in

general perform better than an agent without it. In Fig. 17, we

see that the probability distribution of the case with fixed

structure (which is the hand-designed structure) has tendency

toward the lower values of fitness compared to the agent with

learning. This shows that even where behavior modules are

completely irrelevant to the current situation (they are

random), the structure learning can extract some useful

information by reorganising behavior modules. Similar

phenomenon is observable in Fig. 21.

Phenomenal Behavior: Finally, a sample trajectory of

robot-object contact positions, the object’s tilt angle, and the

controlling behaviors are depicted with respect to time in Fig.

22 when Robot 1 is initialized higher than the two other ones.

The behavior co-evolution with the uniform fitness sharing

and structure learning with meme-induced initial knowledge

are used to generate the architecture. In this sample trajectory,

Robot 2 and Robot 3 execute the “Hurry up” behavior module

in early steps while Robot 1 selects “Slow down” behavior

module. However, due to the constraints of that behavior’s

action space (

!

" A Slow = max(v(k) #$v,0),NA{ }), the robot-

object contact point’s speed cannot become negative. Thus,

Robot 1 stands still until the other two move up and the object

tilt angle is reduced. Afterwards, it selects the “Hurry up”

behavior module. When the robots reach the goal they execute

the “Stop” behavior module.

As discussed in Section II.A, the name of a behavior

module comes from the designer’s expectation of that module.

She determines what kind of sensory information goes to it

and what kind of output actions are available to the behavior

module. The overall behavior of the agent and the behavior

module’s contribution to it, however, is not predetermined and

depends on the complex interaction of the environment,

learning and co-evolutionary processes, and the initial design

specifications.

Cooperative co-evolution and learning change behavior

modules and the structure to maximize the overall

performance of the robot. The emergent behavior of the agent

is not necessarily the same as the designer’s prior expectation.

For instance, Fig. 22 shows that the “Slow down” behavior

module (which its input/output spaces are defined in Table 4)

actually stops “Robot 1” instead of slowing down any robot.

In this case, the designer had expected that the robot would

have needed the “Slow down” module when it wanted to

move downward. Therefore, the design of the “Slow down”

module was such that it could not produce any upward

movement. This initial design limitation emerges as a behavior

module that can stop the robot even when it was not designed

for. This suggests that associating a “behavior name” to a

module does not necessarily mean that the module should

behave in the same way.

Summary: The results of these experiments show that

our hybrid co-evolution/learning behavior-based system

design methods can develop a competitive or even superior

agent’s “mind” (or controller) in comparison to a human-made

agent. In addition, our proposed culture-based memetic

algorithm significantly increases the agent’s lifetime

performance, which is crucial for online evolution/learning of

interactive agents.

VII. DISCUSSION

In this section, we summarize the important results and

discussion scattered throughout the paper.

 We used two simulated setups to evaluate our proposed

methods and compared them with each other. We also

compared our methods to hand-designed or partially guided

solutions that came from the designer’s knowledge about the

problem, which is not fully available in general.

 In the abstract problem, our methods performed very

well, and the performance was close to the optimal. The

performance was particularly better for the value-based fitness

sharing mechanism compared to the uniform fitness sharing

mechanism.

 In the abstract problem, the contribution of each behavior

module to the total fitness of the agent is direct, i.e. increasing

the fitness of one behavior module increases the fitness of the

agent. Therefore, the valued-based fitness sharing mechanism

that assigns the performance of behavior module (and not the

performance of the agent) as its fitness results in a more

accurate fitness evaluation compared to the uniform fitness

sharing mechanism. This is the reason for the superiority of

the value-based fitness sharing mechanism in this problem.

Note that this property is not common to all problems, e.g. the

object-lifting problem.

 The results for the abstract problem also showed that

those agents that use learning are slightly better than those

with a fixed structure. This is especially interesting given that

for this problem, every structure’s arrangement can lead to an

optimal solution with an appropriate set of behavior modules.

This shows that learning can find the most rewarding structure

based on the set of available suboptimal behavior modules.

Nevertheless, knowing that any fixed structure is sufficient to

solve the problem helps behavior cooperative co-evolution in

the early generations. The reason is that fixing a structure

produces a selection pressure to specific behaviors’ solutions

and prevents unnecessary diversity in genetic pools.

 Finally, the results of the abstract problem indicated that

better agents could be obtained with meme-induced prior

knowledge.

 In the second experiment, we evaluated our methods in a

robotic task. Hand design of this robotic problem was very

difficult, but resulted in a very successful controller (see

[Nili01]). We use this hand-designed controller as our gold

standard. In this experiment, we used a reinforcement signal

that reflected our beliefs about the objective of the problem.

Needless to say, our method was not especially designed for

this specific problem.

 The fitness of all behavior module co-evolution and/or

structure learning methods with/without meme-induced prior

knowledge was satisfactory and comparable to the human

designed solution. This suggests that the proposed methods

could give us good solutions.

 Our results showed that, in contrast with the abstract

problem, the uniform fitness sharing was better than the value-

based mechanism. The reason is that, in this problem,

maximizing each behavior module’s fitness does not

necessarily lead to the best possible agent, and the value-based

fitness sharing mechanism may lead to selfish behavior

modules.

 In the object-lifting problem, we showed that the final

fitness (which is calculated based on the last five episodes of

learning) of all methods is almost the same. However, the

story was different for the lifetime fitness. The meme-induced

cases helped to considerably increase the lifetime fitness of

agents. This phenomenon shows that having a meme pool

prevents wasting useful knowledge learned by previous

agents. This effect was more noticeable in the uniform fitness

sharing method.

 Finally, we noted that naming a behavior module does

not necessarily mean that the behavior is precisely performing

our anticipated behavior.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a general, hybrid, bio-inspired optimization

approach for designing modular agents. This approach

combines the cooperative co-evolution, reinforcement

learning, and a new interpretation of memetic algorithms.

Although the main concept of our approach is applicable for

different kinds of intelligent agent architectures, we

formulated it for the automatic development of hierarchical

behavior-based architectures. The co-evolutionary process

evolves new behavior modules, the structure learning

organizes them in the agent’s architecture, and the memetic

algorithm shares learned knowledge among the agents.

The key idea of our approach is decomposing the

problem into some potentially easier sub-problems. Instead of

adapting a complete monolithic controller, we co-evolve sets

of behavior modules separately and organize them in the

architecture. Each of these tasks is potentially easier because

the input space dimension of those modules is much smaller

than the joint space of all sensors and internal memories of the

agent. In our modular approach, the designer can use her prior

knowledge for defining the input (state)/ output (actuator)

spaces of behavior modules.

Another possible benefit of our approach is the ability of

the agent to adapt to changes in the environment. Although we

have not explicitly changed the environment to study this

phenomenon, it showed itself during our experiments. In the

first generation where behavior modules were totally random,

the learning agent performed better than a fixed design. This

shows that the learning agent can quickly adapt to the

environment. If learning was not available, the agent would

need to wait for at least one or two generations before the

evolutionary process could increase the fitness of the agent.

There are many potential research directions that can be

pursued based on our approach. The most evident step is

trying it on other interesting and more complex problems. As a

proof of concept, we have provided two benchmark examples

in this paper and the results are competitive to human-

designed solutions. Since our approach has not been especially

designed for these problems, we also expect to get good

results for other problems. Studying how this approach would

scale up to other problems would be fruitful.

Another important research direction is studying the

current fitness sharing mechanism more thoroughly and

investigating other possible approaches. The value-based

fitness sharing mechanism worked well for the abstract

problem because maximizing the fitness of behavior modules

was highly correlated to the task of maximizing the agent’s

fitness. As we discussed in our experiments (Section VI.B.),

this is not true for all problems. One possible research

direction is studying these two approaches on other

benchmarks. A relevant question here is the possibility of

devising other fitness sharing mechanisms. The uniform

fitness sharing mechanism does not exploit the special

architecture of the agent and assigns the same fitness to all

behavior modules involved in the agent’s architecture. The

value-based mechanism tries to benefit from the architecture

and learning experience of the agent to assign the fitness of

behavior modules. A possible approach to study the fitness

sharing problem is the Collective Intelligence (COIN)

framework. COIN addresses the problem of “designing

collective of computational processes to maximize a provided

world utility function when each process tries to maximize its

own payoff utility function” [Wolpert04]. Here, the world

utility function is similar to the agent’s fitness and those

computational processes are each of our behavior modules.

Additionally, tools and approaches like what have been used

in [Wiegand02], [Ficici05], and [Popovici05] can be helpful

for better understanding of the effect of fitness evaluation

methods on the dynamical behavior of our co-evolutionary

method. Nevertheless, the analysis would be more difficult

because of the effects of the learning and memetic algorithms.

Finally, approaches that try to solve relative

overgeneralization pathology of co-evolutionary methods

might be helpful for having more efficient co-evolutionary

mechanism [Panait06]. They change the fitness function by

biasing it toward optimal collaboration. It is not, however,

completely clear how one can estimate the fitness of the

optimal collaborator in our framework. This issue needs

further investigation.

Estimating the generalization capability of the agent and

dealing with noise are two important and relevant issues for

situated agents. Because a situated learning agent deals with

different types of uncertainties, including the stochastic nature

of the environment and the exploratory phase of the learning

process, any performance measure would be contaminated by

noise. When we want to select an agent that performs well in

average, we need to remember that the evaluated fitness is not

exactly the same as the agent’s expected fitness. More

precisely, the empirical fitness has deviations from the

expected fitness. A technique like multiple evaluations of the

fitness function is considered in this paper (see equations (15)

and (17)). There are several methods for handling this

uncertainty in evolutionary optimization [Jin05]. A potential

research direction is adaptively selecting the number of

evaluations based on our confidence on the fitness.

Another important issue is that we want to be sure that if

our agent performs well at the training phase, it will maintain

a similar performance in the future. This is the problem of

generalization and has long been studied in the machine

learning community and studied in [Chong08] in the

evolutionary optimization context. They provide a

probabilistic upper bound on the generalization performance

of an individual based on its performance on a validation set.

In our method where we evaluate each behavior module for

!

N times, the error in the empirical fitness as compared to the

expected fitness decays with a rate of

!

O
1

N

"

$

%

&
' . See also

[Mnih08] for a method called the Bernstein Racing algorithm

that suggests an evaluation schedule to select the individual

with the highest expected performance among a pool of

individuals based on their empirical performance

Nevertheless, the precise analysis of the effects of learning

and the randomness in fitness evaluation needs further

investigation.

Our new interpretation of memetic algorithm was based

on the idea that culture is a means to transfer learned

knowledge from old individuals to new individuals in the

society. Our mechanism of storing and sharing knowledge was

simple and minimal. Nevertheless, one may benefit from more

sophisticated approaches of defining culture and the way it

interacts with individuals in the society.

Extending behavior modules that work with real-valued

state/action spaces is another important research direction. Our

benchmark problems had discrete state/action spaces. In many

problems, however, we are dealing with continuous real-

valued sensors and actuators, see [Mobahi07] for detailed

discussion, and see [Antos07], [Farahmand08A], and

[Farahmand08B] for some mathematically rigorous

reinforcement learning-based approaches to deal with

continuous states/discrete actions problems. In these cases

where we need to work with continuous states and/or actions,

we cannot represent the mappings defined by behavior

modules in an exact form and we need to use function

approximators. These function approximators can be anything

from generalized linear models to multi-layer feedforward

neural networks. Fortunately, using function approximators

does not considerably change our architecture design

approach. The only change is the way we need to encode

behavior modules as genetic material.

Another possible extension is automating the way state

and output spaces are determined. In the proposed approach,

we assume that the state and output spaces of each type of

behavior modules are given by the designer. She determines

which sensors and internal memories are relevant features for

achieving a certain agent’s behavior. Nevertheless, automating

this feature selection mechanism is a very interesting and

difficult research direction. One approach for dealing with this

problem is through an attention control framework

[Fatemi07].

 One issue that needs further investigation is the benefit

of our special problem decomposition for adapting to abrupt

changes in the environment. In the monolithic controller

design, the whole controller should be changed so that the

agent adapts to the new environment. On the other hand, we

showed that, in our approach, structure learning finds the most

rewarding organization of behavior modules even if those

modules were not specifically designed for the new

environment. This gives us a hint that this phenomenon can be

actually true.

We did not observe any divergence in the structure

learning. However, an important open question is whether the

structure learning mechanism converges to the optimal

structure when using estimation of a behavior module’s values

in other structures as the initial estimation of its value in a new

behavior organization, see Section V.A.1.

We should emphasize that the scope of our approach is

not limited to PPSSA architecture. One may adopt the concept

of decomposing the problem and benefiting from co-

evolution/reinforcement learning/memetic algorithm and the

presented methods to other agent’s architectures. However, the

modification needs careful attention, as the same mathematical

formulation, especially the structure learning part, may not

apply directly in detail anymore.

The last point is that, we showed how interaction of co-

evolution, individual learning, and culture helps a society of

agents to improve its average fitness. A theoretical analysis on

the conditions where these mechanisms would be helpful for

solving optimization problems is interesting and important.

Moreover, one may benefit from more accurate models of

sociological and evolutionary processes for tackling hard

optimization problems.

ACKNOWLEDGEMENTS

We greatly appreciate the anonymous associate editor and

reviewers for their helpful comments and constructive

suggestions; and Elliot A. Ludvig, Volodymyr Mnih, Varun

Grover, and Yasin Abbasi for proofreading the paper; and

Ramin Mehran for designing 3D graphic model of the object-

lifting robots. This project was supported in part by the School

of Cognitive Sciences, Institute for Studies in Theoretical

Physics and Mathematics. Amir massoud Farahmand was

partially supported by the Alberta Ingenuity Centre for

Machine Learning.

REFERENCES

1. [Antos07] A. Antos, Cs. Szepesvári and R. Munos,

“Value-iteration based fitted policy iteration: learning

with a single trajectory,” IEEE International Symposium

on Approximate Dynamic Programming and

Reinforcement Learning, pp. 330-337, 2007.

2. [Barto03] A. G. Barto and S. Mahadevan, “Recent

advances in hierarchical reinforcement learning,”

Discrete Event Systems Journal: Special Issue on

Reinforcement Learning, vol. 13, pp. 41-77, 2003.

3. [Baxter01] J. Baxter and P. J. Bartlett, “Infinite-horizon

gradient-based policy search,” Journal of Artificial

Intelligence Research, vol. 15, 2001.

4. [Bertsekas96] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-

Dyanmic Programming, Athena Scientific, 1996.

5. [Brooks86] R. A. Brooks, “A robust layered control

system for a mobile robot,” IEEE J. Robotics and

Automation R.A-2, pp. 14-23, 1986.

6. [Brooks89] R. A. Brook, “A robot that walks: emergent

behavior from a carefully evolved network,” Neural

Computation 1(2), 1989, pp. 252-262.

7. [Brooks91] R. A. Brooks, “Intelligence without

representation,” Artificial Intelligence, 47, pp. 139-159,

1991.

8. [Buriol04] L. Buriol, P. M. Franca, P. Moscato, “A new

memetic algorithm for the asymmetric traveling

salesman problem,” Journal of Heuristics, 10, pp. 483-

506, 2004.

9. [Chernova04]S. Chernova and M. Veloso, “An

evolutionary approach to gait learning for four-legged

robots,” IEEE/RSJ Int. Conf. Intelligent Robots and

Systems (IROS), 2004.

10. [Chong08] S. Y. Chong, P. Tino, and X. Yao,

“Measuring generalization performance in

coevolutionary learning,” IEEE Transactions on

Evolutionary Computation, 12(4), 2008.

11. [Dawkins76]R. Dawkins, The Selfish Gene, Oxford

University Press, 1976.

12. [Dayan93] P. Dayan and G. Hinton, “Feudal

reinforcement learning,” In Advances in Neural

Information Processing Systems (NIPS), 5, Morgan

Kaufmann, San Francisco, CA, pp. 271–278, 1993.

13. [Dietterich00]T. G. Dietterich, “Hierarchical

reinforcement learning with the MAXQ value function

decomposition,” Journal of Artificial Intelligence

Research, 13, pp. 227-303, 2000.

14. [Dorigo94] M. Dorigo and M. Colombetti, “Robot

shaping: developing autonomous agents through

learning,” Artificial Intelligence, 71(4), pp. 321-370,

1994.

15. [Dorigo97] M. Dorigo and M. Colombetti, Robot

Shaping: An Experiment in Behavior Engineering, MIT,

CA, 1997.

16. [Farahmand05A] A. M. Farahmand, M. Nili

Ahmadabadi, B. N. Araabi, “Behavior and hierarchy

development in behavior-based systems using

reinforcement learning,” Technical Report, Department

of Electrical and Computer Engineering, University of

Tehran, 2005.

17. [Farahmand05B] A. M. Farahmand, “Learning and

evolution in hierarchical behavior-based systems,” MS.

Thesis, Department of Electrical and Computer

Engineering, University of Tehran, 2005 [in Persian].

18. [Farahmand06] A. M. Farahmand, M. Nili Ahmadabadi,

C. Lucas, and B. N. Araabi, “Hybrid behavior co-

evolution and structure learning in behavior-based

systems,” In the Proceedings of Congress on

Evolutionary Computation (CEC), Vancouver, Canada,

2006.

19. [Farahmand08A] A. M. Farahmand, M. Ghavamzadeh,

Cs. Szepesvári, and Sh. Mannor, “Regularized policy

iteration,” accepted for publication in Twenty-Second

Annual Conference on Neural Information Processing

Systems (NIPS), 2008.

20. [Farahmand08B] A. M. Farahmand, M. Ghavamzadeh,

Cs. Szepesvári, and Sh. Mannor, “Regularized fitted q-

iteration: application to planning,” European Workshop

on Reinforcement Learning (EWRL), to appear in

Lecture Notes in Artificial Intelligence, 2008.

21. [Fatemi07] H. Fatemi, and M. Nili Ahmadabadi,

“Biologically inspired framework for learning and

abstract representation of attention control,” To appear in

Springer’s Lecture Note in Artificial Intelligence, 2007.

22. [Federici03] D. Federici, “Combining genes and memes

to speed up evolution,” In the Proceedings of the

Congress on Evolutionary Computation (CEC), 2003.

23. [Ficici05] S. G. Ficici, O. Melnik, and J. B. Pollack,

“A game-theoretic and dynamical-systems analysis of

selection methods in coevolution,” IEEE Transactions on

Evolutionary Computation, 9(6), pp. 580-602, 2005.

24. [Floreano96]D. Floreano and F. Mondada, “Evolution of

homing navigation in a real mobile robot,” IEEE

Transactions on Systems, Man, and Cybernetics - Part B,

26, pp. 396-407, 1996,

25. [Floreano00]D. Floreano and J. Urzelai, “Evolutionary

robotics: the next generation,” in: T. Gomi, Ed.,

Proceedings of Evolutionary Robotics, III, Ontario, pp.

231-266, 2000.

26. [Floreano08] D. Floreano, P. Husbands, and S. Nolfi,

“Evolutionary robotics,” in Handbook of Robotics,

Springer-Verlag, 2008.

27. [Ghavamzadeh03]M. Ghavamzadeh and S. Mahadevan,

“Hierarchical policy gradient algorithms," In

Proceedings of the Twentieth International Conference

on Machine Learning (ICML), pp. 226-233, Washington,

D.C., August 2003.

28. [Ghavamzadeh06] M. Ghavamzadeh and Y. Engel,

"Bayesian policy gradient algorithms,” In Advances in

Neural Information Processing Systems (NIPS), 2006.

29. [Gomez97] F. Gomez and R. Miikkulainen,

“Incremental evolution of complex general behavior,”

Adaptive Behavior, 5, pp. 317-342, 1997.

30. [Harati07] A. Harati, M. Nili Ahmadabadi, and B. N.

Araabi, “Knowledge evaluation for credit assignment

among independent q-learners,” IEEE Systems Journal,

vol 1, no1, pp. 55-67, 2007.

31. [Harvey93] I. Harvey, P. Husbands, and D. Cliff, “Issues

in evolutionary robotics,” in: From Animals to Animats

II: Proceedings of the Second International Conference

on Simulation of Adaptive Behavior, J. Meyer, H. L.

Roitblat, and S. W. Wilson, (Eds.), MIT Press-Bradford

Books, Cambridge, MA, 1993.

32. [Hinton87] G. E. Hinton and S. J. Nowlan, “How

learning can guide evolution,” Complex Systems, 1, pp.

495-502, 1987.

33. [Jin05] Y. Jin and J. Branke, “Evolutionary

optimization in uncertain environments – a survey,”

IEEE Transactions on Evolutionary Computation, 9(3),

pp. 303-317, 2005.

34. [Kohl04] N. Kohl and P. Stone, “Policy gradient

reinforcement learning for fast quadrupedal locomotion,”

Proceeding of the IEEE International Conference on

Robotics and Automation (ICRA), 2004.

35. [Kakade02] S. Kakade, “A natural policy gradient,” In

Advances in Neural Information Processing Systems

(NIPS), 2002.

36. [Koza94] J. Koza, “Evolution of a subsumption

architecture that performs a wall following task for an

autonomous mobile robot via genetic programming,” In

Computational Learning Theory and Natural Learning

Systems, vol. 2, S.J. Hanson, T. Petsche, M. Kearns, and

R.L. Rivest, Eds., The MIT Press, pp. 321-346, 1994.

37. [Krasnogor04]N. Krasnogor and S. Gustafson, “A study

on the use of ‘Self-Generation’ in memetic algorithms,”

Natural Computing 3 (1), pp. 53-76, 2004.

38. [Krasnogor05]N. Krasnogor and J. Smith, “A tutorial for

competent memetic algorithms: model, taxonomy, and

design issues,” IEEE Transactions on Evolutionary

Computation, 9(5), 2005.

39. [Krawiec07] K. Kraiwec and B. Bhanu, “Visual learning

by evolutionary and coevolutionary feature synthesis,”

IEEE Transactions on Evolutionary Computation, 11(5),

pp. 635-650, 2007.

40. [Maes90] P. Maes and R. A. Brooks, “Learning to

coordinate behaviors,” in Proc. AAAI-90, pp. 796-802,

1990.

41. [Mahadevan92]S. Mahadevan and J. Connell,

“Automatic programming of behavior-based robots using

reinforcement learning,” Artificial Intelligence, 55, pp.

311-365, 1992.

42. [Matari!92] M. J. Matari!, “Integration of representation

into goal-driven behavior-based robots,“ IEEE

Transactions on Robotics and Automation, 8(3), pp. 46-

54, 1992.

43. [Matari!94] M. J. Matari!, “Reward function for

accelerated learning,” in: W. W. Cohen and H. Hirsh,

(Eds.), Proc. 8th Int. Conf. Machine Learning, Morgan

Kaufmann, pp. 181-189, 1994.

44. [Matari!97] M. J. Matari!, “Reinforcement learning in

the multi-robot domains,“ Autonomous Robots, vol. 4,

no. 1, pp. 73-88, 1997.

45. [Matari!98] M. J. Matari!, “Behavior-based robotics as a

tool for synthesis of artificial behavior and analysis of

natural behavior,” Trends in Cognitive Science, vol. 2,

no. 3, pp. 82-87, 1998.

46. [Matari!01] M. J. Matari!, “Learning in behavior-based

multi-robot systems: policies, models, and other agents,”

Cognitive System Research - special issue on multi-

disciplinary studies of multi-agent learning, Ron Sun,

ed., 2(1), pp. 81-93, 2001.

47. [Merz99] P. Merz and B. Freisleben, “A Comparison

of memetic algorithms, tabu search, and ant colonies for

the quadratic assignment problem,” in Proceedings of the

Congress on Evolutionary Computation (CEC), 1999.

48. [Merz00] P. Merz and B. Freisleben, “Fitness

landscape analysis and memetic algorithms for the

quadratic assignment problem,” IEEE Transactions on

Evolutionary Computation, 4(4), pp. 337-352, 2000.

49. [Michaud98]F. Michaud and M. J. Matari!, “Learning

from history for behavior-based mobile robots in non-

stationary conditions,” Autonomous Robots and Machine

Learning AR:5, ML:31, AR:335-354, ML:141-167,

1998.

50. [Mnih08] V. Mnih, Cs. Szepesvári, and J-Y. Audibert,

“Empirical bernstein stopping,” in 25th International

Conference on Machine Learning (ICML), 2008.

51. [Mobahi07] H. Mobahi, M. Nili Ahmadabadi, and B. N.

Araabi, “A biologically inspired method for concept

imitation using reinforcement learning,” Applied

Artificial Intelligence, 21 (3): 155-183, Feb 2007.

52. [Moscato92]P. Moscato and M. Norman, “A Memetic

approach for the travelling salesman problem –

implementation of a computational ecology for

combinatorial optimisation on message-passing

systems,” In Proceeding of the International Conference

on Parallel Computing and Transputer Applications,

IOS Press, Amsterdam, 1992.

53. [Moscato03]P. Moscato and C. Cotta, “A gentle

introduction to memetic algorithms,” In F. Glover and G.

Kochenberger (Eds.), Handbook of Metaheuristics, pp.

105-144. Kluwer Academic Publishers, Boston MA,

2003.

54. [Ng99] A. Ng, D. Harada, and S. Russell, “Policy

invariance under reward transformations: theory and

application to reward shaping,” Proc. 16th International

Conf. on Machine Learning (ICML), Morgan Kaufmann,

San Francisco, CA, 1999.

55. [Ng00] A. Ng, S, Russell, “Algorithms for inverse

reinforcement learning,” In Proc. of the Seventeenth

International Conference on Machine Learning (ICML),

2000

56. [Nili01] M. Nili Ahmadabadi and E. Nakano, “A

constrain and move approach to distributed object

manipulation,” IEEE Transactions on Robotics and

Automation, 17(2), pp. 157-172, 2001.

57. [Nolfi99] S. Nolfi and D. Floreano, “Learning and

Evolution,” Autonomous Robots 7(1), pp. 89-113, 1999.

58. [Nolfi00] S. Nolfi and D. Floreano, Evolutionary

Robotics: The Biology, Intelligence, and Technology of

Self-Organizing Machines, MIT Press, Cambridge, MA,

2000.

59. [Ong04] Y.S. Ong and A. J. Keane, “Meta-

lamarckian learning in memetic algorithms,” IEEE

Transactions on Evolutionary Computation, 8(2), pp. 99-

110, 2004.

60. [Panait06] L. Panait, S. Luke, R. P. Wiegand, “Biasing

coevolutionary search for optimal multiagent behaviors,”

IEEE Transactions on Evolutionary Computation, 10(6),

pp. 629-645, 2006.

61. [Parker98] L. Parker, “ALLIANCE: an architecture for

fault-tolerant multi-robot cooperation,” IEEE

Transactions on Robotics and Automation, 14(2), 1998,

pp. 220-240.

62. [Parr98] R. E. Parr and S. Russell, “Reinforcement

learning with hierarchies of machines,” In Advances in

Neural Information Processing Systems (NIPS):

Proceeding of the 1997 Conference, Vol. 10, Cambridge,

MA. MIT Press, 1998.

63. [Popovici05]E. Popovici and K. De Jong,

“Understanding cooperative co-evolutionary dynamics

via simple fitness landscapes,” In Proceedings of the

Genetic and Evolutionary Computation Conference

(GECCO), 2005.

64. [Potter00] M. A. Potter and K. A. De Jong,

“Cooperative coevolution: an architecture for evolving

coadapted subcomponents,” Evolutionary Computation,

8 (1), pp. 1-29, 2000.

65. [Prescott99] T.J. Prescott, P. Redgrave, and K. Gurney,

“Layered control architectures in robots and vertebrates,”

Adaptive Behavior, 7, pp. 99-127, 1999.

66. [Radcliffe94]N. J. Radcliffe and P. D. Surry, “Formal

memetic algorithm,” In T. Fogarty (ed.), Evolutionary

Computing: AISB workshop, vol. 865 of Lecture Notes in

Computer Science, pp. 1-16, Springer-Verlag, Berlin,

1994.

67. [Rosin97] C. D. Rosin and R. Belew, “New methods

for competitive co-evolution,” Evolutionary

Computation, 5(1), pp. 1-29, 1997.

68. [Smith07] J.E. Smith, “Coevolving memetic

algorithms: A review and progress report,” IEEE

Transactions on Systems, Man, and Cybernetics, 37(1),

Feb 2007.

69. [Sutton98] R. S. Sutton, and A. G. Barto,

Reinforcement Learning: An Introduction, MIT Press,

Cambridge, MA, 1998.

70. [Sutton99] R. S. Sutton, D. Precup, and S. Singh,

“Between MDPs and semi-MDPs: a framework for

temporal abstraction in reinforcement learning,”

Artificial Intelligence, 112, 1999, pp. 181-211.

71. [Togelius04]J. Togelius, “Evolution of a subsumption

architecture neurocontroller,” Journal of Intelligent and

Fuzzy Systems, 15:1, pp. 15-20, 2004.

72. [Wang96] Z. D. Wang, E. Nakano, and T. Matsukawa,

“Realizing cooperative object manipulation using

multiple behavior-based robots,” in Proc. IEEE/RSJ Int.

Conf. Intelligent Robots and Systems, vol. 1, Osaka,

Japan, pp. 310–317, 1996,

73. [Whiteson06] S. Whiteson and P. Stone, “Evolutionary

function approximation for reinforcement learning,”

Journal of Machine Learning Research, pp. 877-917,

2006.

74. [Wiegand02]R. P. Wiegand, W. C. Liles, and K. A. De

Jong, “Analyzing cooperative coevolution with

evolutionary game theory,” In Proceedings of the

Congress on Evolutionary Computation, pp. 1600-1605,

2002.

75. [Wiegand04]R. P. Wiegand, “An analysis of cooperative

coevolutionary algorithms,” Ph.D. Thesis, George Mason

University, 2004.

76. [Wolpert04] D. H. Wolpert, “The Theory of Collectives,”

in K. Tumer and D. H. Wolpert (Ed.’s), Collectives and

the Design of Complex Systems, Springer-Verlag, 2004.

77. [Ziemke98] T. Ziemke, “Adaptive Behavior in

Autonomous Agents,” Presence, Vol. 7, No. 6, pp. 564-

587, 1998.

78. [Zou04] P. Zou, Z. Zhou, G. Chen, and X. Yao, “A

novel memetic algorithm with random multi-local-

search: a case study of tsp,” In Proceedings of the

Congress on Evolutionary Computation (CEC), pp.

2335-2340, 2004.

Agent

Behavior Pool 1

Behavior Pool 2

Behavior Pool n

Meme Pool
(Culture)

Figure 1. Building an agent from different behavior pools.

Figure 2. A typical structure of a Purely Parallel Subsumption Architecture.
!

" A
1

!

" S
5

!

A

Output

!

" A
5

 5
B

4
B

3
B

2
B

1
B

!

" S
1

st
at

es

!

S

Figure 3. Excitation subspaces of
1
B and

2
B in S and corresponding mapping to

1
S ! and

2
S ! . Note that excitation spaces may overlap.

• Initialize n different behavior pools

!

"
i

{ } for each behavior type
i
B

• Initialize an empty culture (meme pool) M

• While stopping condition are not met

o Selects n different behavior modules
i
B from each behavior pool to

make a set of randomly chosen behavior modules { }
i
B

o If there is any meme in the meme pool M , select a meme M!
0
T

according to the fitness of each meme

o Pass { }
i
B and

0
T to the agent

! Set initial structure as
0
T

! Initialize value (e.g.

!

˜ V ij = 0) and learning parameters

! For a lifetime do

• Update learning parameters (e.g. decay

!

"k,ij)

• Select an architecture
*
T that maximizes (9) (Zero-Order

representation) (If the architecture is fixed, skip this

step).

• Using architecture
*
T , let the agent interact with the

environment for a while

• Receive reinforcement signal from the critic (external or

internal)

• Update the estimation of necessary values (

!

˜ V ij{ } for

Zero Order structure learning representation (13))

! Return fitness (14) and the final structure
*
T to the evolutionary

process

o Share fitness to behaviors according to the sharing policy (uniform (15)

or value-based (17))

o Update meme pool using
*
T and its fitness (22)

o For each behavior pool

! Apply conventional genetic operators to behavior modules in

order to generate a new population, i.e. Selection, Crossover, and

Mutation.

Figure 4. Proposed framework for development of behavior-based systems

Figure 5. (Abstract Problem) Average and maximum fitness comparison for different fitness sharing methods with

behavior co-evolution and structure learning: 1) uniform fitness sharing (blue) and 2) value-based fitness sharing

(black). Solid lines indicate the average fitness of the population and dotted lines show maximum fitness. The

bottommost line (green) shows the expected fitness of a random behavior and structure (with the same probability of
selecting action or NA for each behavior) and the uppermost line (red) is the maximum achievable fitness.

Figure 6. (Abstract Problem) Average and maximum fitness comparison for different design methodologies that use

uniform fitness sharing: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of behavior

modules and learning structure benefiting from the meme-induced initial knowledge (black), and 3) co-evolution of

behavior modules and fixed structure (magenta). Solid lines indicate the average fitness of the population and dotted
lines show the maximum fitness. Maximum achievable fitness is shown by the uppermost line (red).

Figure 7. (Abstract Problem) Fitness probability density comparison for uniform fitness sharing. Comparison is made

among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that learn
structure from an initial random setting (middle/green), and agents with fixed structure (right/red).

Figure 8. (Abstract Problem) Probability distribution comparison for uniform fitness sharing (

!

P Fitness "#{ }).

Comparison is made among agents using meme pool as their initial knowledge for their structure learning (black),

agents that learn structure from a random initial setting (blue), and agents with hand-designed structure (magenta).

Right-side tendency of distributions indicates higher chance of generating very good agents.

Figure 9. (Abstract Problem) Average and maximum fitness comparison for different design methodologies that use

value-based fitness sharing: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of

behavior modules and learning structure benefiting from the meme pool initial knowledge (black), and 3) co-evolution

of behavior modules and fixed structure (magenta). Solid lines indicate the average fitness of the population and dotted

lines show the maximum fitness. Maximum achievable fitness is shown by the uppermost red line.

Figure 10. (Abstract Problem) Fitness probability density comparison for value-based fitness sharing. Comparison is

made among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that

learn structure from an initial random setting (middle/green), and agents with fixed structure (right/red).

Figure 11. (Abstract Problem) Probability distribution comparison for value-based fitness sharing

(

!

P Fitness "#{ }). Comparison is made among agents using meme pool as their initial knowledge for their structure

learning (black), agents that learn structure from a random initial setting (blue), and agents with hand-designed

structure (magenta). Right-side tendency of distributions indicates higher chance of generating very good agents.

Figure 12. A group of robots lifting a bulky object.

Figure 13. (Object Lifting) Averaged last five episodes fitness comparison for different design methods: 1) co-

evolution of behavior modules (uniform fitness sharing) and learning structure (blue), 2) co-evolution of behavior

modules (valued-based fitness sharing) and learning structure (black), 3) hand-designed behavior modules with

learning structure (the second uppermost solid line/green), and 4) hand-designed behavior modules and structure

(uppermost solid line/red). Dashed lines across the hand-designed cases (3 and 4) show one standard deviation region

across the mean performance.

Figure 14. (Object Lifting) Averaged last five episodes and lifetime fitness comparison for uniform fitness sharing co-

evolutionary mechanism: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of

behavior modules and learning structure benefiting from meme pool initial knowledge (black), 3) co-evolution of

behavior modules and hand-designed structure (magenta), 4) hand-designed behavior modules and learning structure

(the second uppermost solid line/green), and 5) hand-designed behavior modules and structure (the uppermost solid

line/red). Solid lines indicate the last five episodes of the agent’s lifetime and dashed lines indicate the agent’s

lifetime fitness. Although the final time performance of all cases is close to each other, the lifetime fitness of memetic-
based designs is much higher.

Figure 15. (Object Lifting) Fitness probability density comparison for uniform fitness sharing. Comparison is made

among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that learn
structure from a random setting (middle/green), and agents with hand-designed structure (right/red).

Figure 16. (Object Lifting) Lifetime fitness probability density comparison for uniform fitness sharing. Comparison is

made among agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents that

learn structure from a random setting (middle/green), and agents with hand-designed structure (right/red).

Figure 17. (Object Lifting) Probability distribution comparison for uniform fitness sharing (

!

P Fitness "#{ }).

Comparison is made among agents using meme pool as their initial knowledge for their structure learning (black),

agents that learn structure from a random initial setting (blue), and agents with hand-designed structure (magenta).

Dashed lines are for distribution for lifetime fitness. Right-side tendency of distributions indicates higher chance of
generating very good agents.

Figure 18. (Object Lifting) Averaged last five episodes and lifetime fitness comparison for value-based fitness sharing

co-evolutionary mechanism: 1) co-evolution of behavior modules and learning structure (blue), 2) co-evolution of

behavior modules and learning structure benefiting from meme-induced initial knowledge (black), 3) co-evolution of

behavior modules and hand-designed structure (magenta), 4) hand-designed behavior modules and learning structure

(the second uppermost solid line/green), and 5) hand-designed behavior modules and structure (the uppermost solid

line/red). Solid lines indicate the last five episodes of the agent’s lifetime and the dashed lines indicate the agent’s

lifetime fitness. The lifetime fitness of hand-designed behavior modules and learning structure is the flat dashed line.

The lifetime fitness of structure learning without meme pool is the lower and that with meme is the upper dashed

curve. Although the final time performance of all cases is rather the same, the lifetime fitness of memetic-based design

is higher.

Figure 19. (Object Lifting) Fitness probability density comparison for value-based fitness sharing. Comparison is

made between agents using meme pool as their initial knowledge for their structure learning (left/dark blue), agents

that learn structure from a random initial setting (middle/green), and agents with hand-designed structure (right/red).

Figure 20. (Object Lifting) Lifetime fitness probability density comparison for value-based fitness sharing.

Comparison is made among gents using meme pool as their initial knowledge for their structure learning (left/dark

blue), agents that learn structure from a random initial setting (middle/green), and agents with hand-designed structure

(right/red).

Figure 21. (Object Lifting) Probability distribution comparison for value-based fitness sharing (

!

P Fitness "#{ }).

Comparison is made among agents using meme pool as their initial knowledge for their structure learning (black),

agents that learn structure from a random initial setting (blue), and agents with hand-designed structure (magenta).

Dotted lines are for distribution for lifetime fitness. Right-side tendency of distributions indicates higher chance of

generating very good agents.

0 0.5 1 1.5
2

2.5

3

3.5

Time (sec)

H
e
i
g
h
t

0 0.5 1 1.5
0

10

20

30

Time (sec)

T
i
l
t

A
n
g
l
e

0 0.5 1 1.5
3

4

5

Time (sec)
C
o
n
t
r
o
l
l
i
n
g

B
e
h
a
v
i
o
r
s

robot 1

robot 2

robot 3

Figure 22. A sample trajectory showing the position of robot-object contact points, the tilt angle of the object during

object lifting, and controlling behavior module of robots at each time step after 50 generations of behavior modules

cooperative co-evolution (with uniform fitness sharing) and 20 episodes of structure learning in each trial (meme is

used). Behavior modules correspondence with numbers in the lowest diagram is as follows: 3 (Stop), 4 (Hurry up), 5

(Slow down). Other behavior modules are not used in this sample co-evolved/learned architecture.

Table 1. Problem Specification

 Abstract Problem Object Lifting

Problem Space 5x5 problem space and 7 actions Multi-robot object lifting

Solution Space

Seven behavior modules each can

produce one type of action (behavior

module
i
B has { }NAaA

ii
,=)

Five behaviors modules’ state and action

space (Push more, Don’t go fast, Stop at

goal, Hurry up, and Slow down.)

Co-evolution

Parameters

Seven Populations, Generations =

200, Population size = 30, No. of

individual evaluations in each gen. =

300, Tournament selection

(competition between 3 individuals),

the best individual of each genetic

pool goes directly to the next

generation, 5.0=
c
p

!
"

!
#

$

%%

%
+=

002gen180 0

179gen
)1(log

01.0

2 genphardm

hard

m

soft

m pp 2=

Five Populations, Generations = 50,

Population size = 20, No. of individual

evaluations in each gene.= 200,

Tournament selection (competition

between 3 individuals), the best

individual of each genetic pool goes

directly to the next generation, 5.0=
c
p

!
"

!
#

$

%%

%
+=

50gen41 0

40gen
)1(log

01.0

2 genphardm

hard

m

soft

m pp 2=

Learning

Parameters

Structure learning with ZO

representation

episodesepisode
1=!

Structure learning with ZO representation

!

"episode

str = 0.1 0.99()
episode

Memetic

Parameters

Culture size = 5

3.0=
i
T

! (22)

Meme selection: scaled roulette

wheel (p=0.9)/random (p=0.1)

Culture size = 5

3.0=
i
T

! (22)

Meme selection: scaled roulette wheel

(p=0.9)/random (p=0.1)

Experimentation

Conditions

100 episodes trial

3 runs

Fitness is the mean value of

reinforcement signal during the

agent’s lifetime

300 time step lift-up, 005.0=!T

25 (5) episodes trial for with structure

learning (fixed structure) case

3 runs for learning cases – 2 runs for fix

structure case - 1 run for pre-defined

behaviors (no evolution)

)3,2()1(3,2,1 Uz !

Fitness (Lift time fitness) is calculated by

averaging the last 5 episodes (all

episodes) - Fitness (and not the Lifetime

fitness) is used for evolutionary

mechanism

Performance

Measures

Received reinforcement signal

(MA filtered with window size 10)

1-Fitness (average of last 5 episodes)

2-Liftime fitness (average of all episodes)

Table 2. Hand-Designed Behaviors.

Push more: vkvkv !+=+)()1(

Do not go fast: if max)(vkv > then max)1(vkv =+ else do nothing

Stop at goal: if goalzkz !)(then stop (0)1(=+kv)

Hurry up: if 0)(!! >k and the robot is the lowest one then

),)(min()1(maxvvkvkv !+=+

Slow down: if 0)(!! >k and the robot is the highest one then

)0,)(max()1(vkvkv !"=+

[]PushMoreDontGoFastHurryUpSlowDownStop=!designedhandT

Table 3. Reinforcement Signal Definition

v

k

z

k

z

kkkk
rrrrrr ++++= 2121

!! (29)
!
"
#

$

$<$$
=

otherwise 1.0

5.0)1()(1
1

ktk
r
k

%% (30)

!

rk
"

2 =

1

k
 "(k) < "

0

#0.1 k otherwise

$

%
&

'
&

 (31)

!
"
#

$

<$
=

otherwise 1.0

5.0|)(| 1
1

goalz

k

zkz
r (32)

2.0zz(k) 1 goal
2 +>!=
z

k
r (33)

maxv) v(k1.0 >!=
v

k
r (34)

Table 4. State and Action Definitions for to be Evolved Behavior Modules

Push

more
{ }!="

morePush
S { }NAvkvkvA ,)()1(morePush !+=+="

Do not

go fast
{ }{ }5,4,3,2,1,0)()(fast got Don' !"#=$ kvkvS

()

!
"
#

$
%
& =+

='
NA

vkvkv
A

,),(min)1(max

fast got Don'

Stop at

goal
{ }"0)(","0)("Stop !"<"=#

goalgoal zkzzkzS

{ }NAkvA ,0)1(Stop =+=!

Hurry

up

{ }"",""

robothighest

 robot, middle robot,lowest

00

Hurry

!!!! ><

"
#
$
%

&
'
(

=)S
(){ }NAvvkvA ,,)(min maxHurry !+="

Slow

down

{ }"",""

robothighest

 robot, middle robot,lowest

00

Slow

!!!! ><

"
#
$
%

&
'
(

=)S
{ }NAvkvA),0,)(max(Slow !"=#

