Model-based and Model-free Reinforcement Learning
for Visual Servoing

Amir massoud Farahmand, Azad Shademan, Martin Jagersand, and Csaba Szepesvari

Abstract— To address the difficulty of designing a controller
for complex visual-servoing tasks, two learning-based uncali-
brated approaches are introduced. The first method starts by
building an estimated model for the visual-motor forward kine-
matic of the vision-robot system by a locally linear regression
method. Afterwards, it uses a reinforcement learning method
named Regularized Fitted Q-Iteration to find a controller (i.e.
policy) for the system (model-based RL). The second method
directly uses samples coming from the robot without building
any intermediate model (model-free RL). The simulation results
show that both methods perform comparably well despite not
having any a priori knowledge about the robot.

I. INTRODUCTION

Visual-servoing is the task of minimizing a visually-
specified objective by giving appropriate control commands
to a robot (See [1], [2], and [3] for tutorials on visual
servoing). The usual practice for visual-servoing is designing
a controller that stabilizes a dynamical system defined by
visual features. This is often done by a linear controller that
uses the visual-motor Jacobian of the robot-camera system.

There are at least two important drawback to the tra-
ditional approach. First, the analytic Jacobian depends on
the calibration of both the robot and the camera, and their
relative pose, so it cannot be computed without calibration
data. For example consider the case that the relative position
of the camera to the robot changes, or the situation where the
servoing objective is not defined by the end-effector frame
but by some other part of the robot, e.g. the middle of a link
between two joints, or a grasped object.

The second problem is that the usual locally-defined linear
controllers do not benefit from global dynamical knowledge
of the system because they only use local information
summarized in the visual-motor Jacobian. Hence, it is quite
possible that relying on the local information might not lead
to a globally optimal performance.

These two problems have been partially addressed previ-
ously. Several researchers have developed methods for esti-
mating a visual-motor model of the robot (i.e. pose-indexed
varying Jacobian) online [4][5][6][7]. However, most of these
research have been only focused on estimating locally-valid
models, and keeping one such at a time. Although local mod-
els can be used to design locally stabilizing controllers, those
models are not natural for global planning and controlling

This research was partially supported by iCORE, NSERC, and the Alberta
Ingenuity Fund.

All authors are with the Department
University of Alberta, Canada.
szepesva}@cs.ualberta.ca

Csaba Szepesvdri is on leave from MTA SZTAKI.

of Computing Science,
{amir, azad, jag,

approaches that usually need the global knowledge of the
system’s model.

Visual servoing has been extensively studied with differ-
ent control schemes such as position-based controllers [8],
image-based controllers ([9], [10]), or hybrid controllers [11].
These schemes can be either calibrated, where the robot or
the camera are calibrated, or uncalibrated, where the model
of the system is a priori unknown. Uncalibrated visual ser-
voing can be considered as a solved problem for local tasks
with non-redundant manipulators. However, in uncalibrated
systems there are still theoretical and practical implications
for global visual servoing due to nonlinear model estimation
that make visual servoing challenging.

In this paper, we address both problems in a unified
approach. We use kernel-based locally linear regression for
estimating the visual-motor forward kinematic model of
the robot (Section III). This globally-valid model can be
used for designing a local controller and/or global planner.
Afterwards, Regularized Fitted Q-Iteration (RFQI) [12] will
be introduced that finds a close to optimal solution for
the learning/planning problem (Section IV). This recently
proposed nonparametric reinforcement learning (RL) method
uses joint values data and a reward signal to find a policy
that maximizes an objective functional. By appropriately
designing the reward signal, it can find an optimal policy (i.e.
controller) for the robot. RQFI can be used in both model-
based or model-free approaches.

RQFI can be used in both calibrated and uncalibrated
scenarios. In the calibrated scenario, RQFI perform as a
global planner. For uncalibrated systems, we can either use
RFQI in a model-based or model-free approaches. In the
model-based approach, we first estimate a model of the
robotic system and then use it for planning. In the model-
free approach, we directly use data to find a close to optimal
policy (Section V).

II. PROBLEM SETUP

Consider a robotic manipulator that consists of a series
of revolute and prismatic joints characterized by joint angles
or displacement S € R? and a vision system that observes
the environment.! The vision system can observe the robot
from a fixed position (eye-to-hand), can be attached to the
end-effector (eye-in-hand), or any other fixed position on the
robot. By changing joint variables, the robot moves and the
image projected on each camera changes. By defining some

'We use S instead of more conventional notation g for describing joint
variables to avoid confusion with), which denotes the action-value function
in reinforcement learning. See Section IV.

feature points on camera images, we can relate the position
of the joint variables to the position of those feature points. If
we denote x; € R as the value of one of the visual features,
there is a relation between S and z such as z; = f;(9).
Depending on the way we define the feature, f; would be
related to the kinematic model of the robot and the camera
model. Note that this function is different for image-based or
position-based visual servoing, but the essence of it, which
relates feature variables to the joint variables, is the same.

Generalizing the previous formalism to several, say m
features, the feature vector X € R™ and visual-motor
function F'(S) are defined as follows

X = (215225 . Tyt

F .= [fl(S),fQ(S), ~-~§fm(S)}m><1
X = F(S).

Let S(t) be a function of time; the dynamics of feature points

e dX ds

where J(S) = OF(S)/0S is the visual-motor Jacobian.
To perform image-based tasks like regulating feature points
to a specified position, one can design a local controller,
design a complicated nonlinear controller, or solve a global
planning problem that explicitly optimizes a cost functional.
In general, the visual-motor function F' is not known for an
arbitrary robot-camera system. One can try to estimate F'
itself or its Jacobian J(.S). Our model-based RL approach
uses an estimate of F' (and not F' itself, which is assumed
to be unavailable) to design an appropriate controller.

III. FORWARD KINEMATIC ESTIMATION
A. Locally Linear Regression for Model Estimation

To estimate the visual-motor forward kinematic model of
the robot, we use locally linear regression method. This
nonparametric method fits the weighted best hyperplane in
the neighborhood of the query point S and returns £'(.S) (See
Section 5.4 of [13]). See [14] and [15] for similar approaches.

Suppose we have sets of {S;} and {z;(1)} G =1,---,m)
for [=1,--- ,t that are collected by the robot by time ¢. In
the locally linear regression, we find a) and a} such that it
minimizes the following cost function.

> wi(S)(i(l) — (ag +ai (St — S))*.
=1

where w;(S) is the kernel used for local regression method
and is defined wi(s) = K, ((S — S;)/h) and K, is a
kernel such a Gaussian or Epanechnikov kernel and h is
its bandwidth. Solving this optimization problem, which is
defined for any S, the estimated regressor would be

t

2:(S) =Y bi(S)zi(l)

=1

where b(S)T = (b1(9), -+ ,b:(S)), and

el (S WiSs) 718" W, e1 = (1,0,---,0)T,
1 5-S
1 S-S
Ss = . .
1 5 -5

and W is a t x t diagonal matrix with K., ((S; — S)/h)
at its (4,7)th element. The estimated model is F'(S) =
[21(8); -+ 5 &m (5)].

B. Model Selection

Although the performance of locally linear regression is
not very sensitive to the choice of kernel (X,,), the choice
of bandwidth (k) has a significant effect on the convergence
rate of the method [13]. In general, a larger number of data
points necessitates small bandwidth and vice versa. Based
on the convergence rate bounds, one may choose a fixed
schedule for bandwidth depending on the number of samples
and the dimension of the problem, so that the rate would be
optimal. There are, however, some constants in the optimum
bandwidth size that are not known a priori. Thus, following
a fixed schedule does not lead to the best possible results.
A more practical solution is using a cross-validation method
to choose the right bandwidth.

In this paper, we use a modified k-fold cross-validation to
handle dependent data efficiently. Note that in practice {.5;}
are not i.i.d. samples from the joint space, but are coming
from a stochastic process with temporal dependence. Two
random variables S;, and S}, have strong dependence when
t, and ty are close, and are almost independent when they
are far apart. Usually this dependence can be described by
the mixing property of the stochastic process.

The modified cross-validation starts by partitioning the
data to k disjoint set as is usual in k-fold cross-validation.
Let us denote them as 50, Sl, cee ,S'k._l where S; =
{si%_H, Sity2, ,si%+%}. (for simplicity, assume that k
divides ¢.) The usual k-fold cross-validation selects partition
S; (i=1,---,k) and removes it from the data set, use the
remaining partitions to train the model, and evaluate it on
S; and then repeat this procedure for all S;. The empirical
performance would be the average performance on all blocks.

Our method tries to reduce the dependence between the
training data and test data by removing adjacent partitions of
the testing partition. In other words, when we are evaluating
the performance by data from S, the training set would be
{So,++,8i_2,8i12, -+, Sk }. If the data stream is weakly
coupled, this ensures that there is little dependence between
the training set and the testing set, and therefore the perfor-
mance estimation would be more precise.

IV. REGULARIZED FITTED Q-ITERATION

A key to success of any reinforcement learning method
that deals with high-dimensional state spaces is having a
flexible function approximator. Choosing a function approx-
imator that cannot adapt to the difficulty of the problem, such

as a one that uses a fixed number of basis functions, leads
to low-performance systems. This calls for methods that
can change the complexity of their function approximators
according to the number of data point and the intrinsic
regularities of the problem such as its smoothness or sparsity.
There are several suggested approach to address this problem
such as basis adaptation [16], incremental basis construction
[17], tree-based methods [18] and the GPTD algorithm which
uses Gaussian Processes Regression [19].

Our approach of choice is regularization which has been
proven an effective and powerful tool in machine learning
and in particular in supervised learning. The main idea
is to consider learning as an optimization problem where
one minimizes the sum of an empirical error term and a
complexity penalty, the regularizer, which penalizes more
complex solutions. The tradeoff between the empirical error
term and the penalty term is controlled by a single numerical
value: the regularization coefficient. This way the problem
of model-selection is reduced to the problem of choosing a
single numerical value. When the parameter is chosen in an
appropriate way (based on the data or by complexity regu-
larization), the resulting procedure is known to adapt to the
complexity of the target function automatically, converging
almost as fast as if the model was known beforehand (e.g.
See Chapter 21 of [20]). Regularization is an example of
mathematical formalization of the Occam’s razor principle.

In this paper, we consider the Regularized Fitted Q-
Iteration (RFQI). It is an instance of Fitted Q-Iteration
([18]) that uses Reproducing Kernel Hilbert Space (RKHS)-
based regularized regression in its inner loop. This way
we hope to bring the strength of a powerful supervised
learning algorithm to the planning problem. See [12] for
more information about RFQI and more precise statements
about its theoretical guarantees. It is noteworthy to mention
that there have been a few attempts to use regularization in
reinforcement learning such as [21] and [22]. However, the
former works only if the environment is deterministic and
neither of them analyzes the performance of their algorithm.

A. Reinforcement Learning Background and Notations

We briefly review a few concepts and notations from
analysis and Markovian Decision Processes (MDP). We refer
the reader to [23] and [12] for further details. Reader who
is not interested in rigorous definitions or is already familiar
with them may just skip to Section I'V-B.

For a measurable space with domain S, we let M(S)
denote the set of probability measures over S. For p > 1,
a measure v € M(S), and a measurable function f : S —
R, we let [|f||,, denote the LP(v)-norm of f defined as
I£115., = [1f(s)[Prv(ds). We shall also write || f[|,, to denote
the L?(v)-norm of f. We denote the space of bounded
measurable functions with domain S by B(S), and the space
of measurable functions with bound 0 < K < oo by
B(S; K).

A finite-action discounted MDP is defined by a quintuple
(S, A, P,R,~), where S is the (possibly infinite) state space,
A = {ay,as9,...,ap} is the finite set of actions, P :

Sx A — M(S) is the transition probability kernel, P(-|s, a)
defining the next-state distribution upon taking action a in
state s, R(-|s,a) gives the corresponding distribution of
immediate rewards, and v € (0,1) is the discount factor.
We make the following assumptions on the MDP:

Assumption A1 (MDP Regularity) S is a compact sub-
set of the d-dimensional Euclidean space. We assume the
expected immediate rewards r(s,a) = [rR(dr|s,a) are
bounded by Rax: [|7]|cc < Rmax-

A stationary Markov policy 7 : S — M (A) is defined as
a time-independent (measurable) mapping from the current
state s to a distribution over the set of actions 7(-|s). A policy
is deterministic if the probability distribution concentrates
on a single action for all states. Deterministic stationary
Markov policies will be identified with mappings from states
to actions 7 : S — A. In the rest of this paper, we use the
term policy to refer to stationary Markov policies.

The value of a policy m when it is started from a state
s is defined as the total expected discounted reward that
is encountered while the policy is executed, i.e. V™(s) =
E, [> o7 Re| So = s]. Here R, denotes the reward re-
ceived at time step t; Ry ~ R(:|Sy A;) and S; evolves
according to Syy1 ~ P(:|St, A:) where A; is sampled from
the distribution assigned to the past observations by 7. For
a policy m, A ~ w(-|S¢), while if 7 is deterministic then
we write A; = 7w(S5). The function V™ is also called the
state-value function of policy 7. Closely related to the state-
value functions are the action-value functions, defined by
Q™ (s,a) = Ex [> 20V Re| So = 5, Ag = al. It is easy to
see that for any policy m, the functions V™ and Q™ are
bounded by Rmax/(1 — 7).

Given an MDP, the goal is to find a policy that attains
the best possible values, V*(s) = sup, V™ (s), for all states
s € S. Function V* is called the optimal value function.
A policy is called optimal if it attains the optimal values
V*(s) for any state s € S, ie., if V™(s) = V*(s) for
all s € S. In order to characterize optimal policies it
will be useful to define the optimal action-value function,
Q*(s,a): Q*(s,a) = sup, Q™ (s,a). Further, we say that
a deterministic policy 7 is greedy w.rt. an action-value
function @ € B(S x A) and write 7 = @(-;Q), if, for all
seSandae€ A, 7(s) € argmax,c 4 Q(s,a). The Bellman
optimality operator T : B(S x A) — B(S x A) is defined
by (TQ)(s,a) =r(s,a)+v [maxeca Q(s',a')P(ds|s, a).
As it is well known, this operator 7" is a contraction oper-
ator w.r.t. the supremum-norm with index . Moreover, the
optimal action-value function is the unique fixed point of 7"
TR* = Q*.

Throughout the paper F C {f : § — R} will denote
some subset of real-valued functions over the state-space S.
For convenience, we will treat elements of FM as real-valued
functions f defined over S x.A with the obvious identification
f=f,. o fm), f(s,a5) = fi(s), 7=1,..., M. The set
FM will denote the set of admissible functions used in the
optimization step of our algorithm.

FittedQ(D,K,Qo)
/I D: samples
/I K: number of iterations
/I Qq: Initial action-value function
for k=0to K —1do
Qk—i—l — FitQ(ka Dv k)
end for
return Q)i

Fig. 1. Generic Fitted Q-Iteration

B. Algorithm

The algorithm studied in this paper is an instance of
the generic fitted Q-iteration method, whose pseudo-code
is shown in Fig. 1. The algorithm attempts to approx-
imate the optimal action-value function * and mimics
value iteration. Since computing the Bellman operator ap-
plied to the last iterate at any point involves evaluat-
ing a high-dimensional integral we use a Monte-Carlo
approximation together with a regression procedure. For
this purpose a set of samples D is generated: D =
{(51,41,R1,57),...,(Sn,An,Rn,S%)}. In this paper
for the sake of simplifying the analysis we assume that the
actions and next states are generated by some fixed stochastic
stationary policy mp: A; ~ mp(:|St), S; ~ P(:|St, At),
R; ~ R(+|St, At).

The state-marginal of v is denoted by vs. We assume
that v is a strictly positive measure, i.e., its support is S X
A. Intuitively, this ensures that the samples cover all state-
action pairs. In particular for this we must have that m,, =
minge 4 infses mp(als) > 0.

The fitting procedure that we study in this paper is
penalized least-squares. Assuming that in the k' iteration
we use samples with index N < i < N+ My = Ng41—1,
the (k + 1)*® iterate is obtained by

1 Ni+Mp—1
Q = argmin ——
k+1 gery My, 1:21%
—Q(S;, A)]? + APen(Q),
(1

where Pen(Q) is a penalty term and A > 0 is
the regularization coefficient.> The first term is the
sample-based least-squares error of using Q(S;, A;)
to predict R, + ymaxgeqQr(Sia’) at (S, A4;).
This term is the empirical counterpart to the loss
Lh(Q) = E[(Ri+ymaxyea Qu(S) a') — Q(Si, A)?].
The minimizer of this loss function is the regression
function E [R; + ymaxgyea Qr(S),a')|S; =34, =a] =
(TQk)(s,a). As the number of samples grows to infinity the
empirical loss converges to Lj and we wold like the iterate
Qr+1 to converge to T'Qi. To do so, one needs to prevent

. o
[R; + vg}gﬁQk(Sz,a)

2Note that in practice one would generate samples whenever needed, i.e.,
there is no need to generate and store all the samples. However, it is also
possible to reuse the samples if sample generation is expensive. In such a
case the analysis needs to be changed slightly.

overfitting or over-smoothing. This is the job of the second
term on the right hand side of (1). This term regulates how
complex solutions are acceptable in an implicit manner.
Choosing a larger A means searching in a smaller space of
functions and vice versa.

When FM is a Sobolev-space® and Pen(Q) is the cor-
responding Sobolev-space norm (the squared norm of the
generalized partial derivatives of ()), this optimization leads
to thin-plane spline estimates, popular in the non-parametric
statistics literature [20].

When searching for a solution in general the order of
smoothness is unknown. Further, the optimal choice of
the regularization coefficient would depend on the target
function. The approach taken in regression can be followed
here, too: Try different smoothness orders (this corresponds
to different penalty terms) with different regularization coef-
ficients and choose between them using a hold-out set. This
leads to estimates whose rate of convergence has the optimal
order and scales with the actual roughness, Pen(7T'Qy).

Optimizing over a Sobolev-space is a particular case of
optimization in a reproducing kernel Hilbert space (RKHS).
Thus, more generally, we may start with a Mercer kernel
function k, and set Pen(Q) to be the norm of) in H, the
RKHS underlying k [24]. This way we obtain

1 Ni+Mp—1
Qk+1 = argmin —— R; + ymax Qy (S}, d
+1 = argmin - :Z]; [R: + v max Qu(S], o)
2 2
—Q(Si, A"+ Q5 -
(2)
According to the Representer Theorem (e.g., see
[24]), every solution to Eq. (2) is the sum of
kernels centered on the observed samples: i.e.,
Njp+M;—1
Q(s,a) = Zi:k;;rkk - N+1k((Si, A7), (s,a)),
where « = (aj,...,ap,)" are the coefficient
that must be determined. Let wus assume that
@ was obtained previously in a similar form:
Ne_14+Myp_1 (%
Qu(w,a) = ST QB k(S5 A, (w,0)),

and let us collect the coefficients into a vector a(F) € RMx—1,
Replacing @ in Eq. (2) by its expansion and using RKHS
properties, we get

1 2
a*) = argmin — Hr +yKta® — KaH +xa Ka,

aceRMk Mk
(3)

with K € RMixMi KT ¢ RMix My,

K((Sic143 Aic14m)s (Sj—148, Aj—148,))

k
K = k(S 1yme A v (Sim1m s Ajm1en),

where A{gk) = argmax,c 4 Qr(Sj,a), and r =
(Rn,,---»RN,+0,—1) . Solving Eq. (3) for o we obtain
oY) = (K 4+ MpAI) =" (r+~vK T a®). The computational

3Sobolev-spaces generalize Holder spaces by allowing functions which
are only almost everywhere differentiable. Thus, they can be useful for
control problems where value-functions often have ridges.

complexity of iteration k with a straightforward implementa-
tion is O(M}) as it involves the inversion of a matrix. This
method is not computationally cheap. The computational
problem is a common problem to all RKHS-based methods.
There are approaches to reduce the computational complexity
of these methods. For example, one may use sparsification
method of [25]. This is the method that we will use in our
experiments.

C. Theoretical Guarantees

We briefly mention the theoretical results for the proposed
RFQI. See [12] for more information.

In this section we assume that (Jj 1 is obtained by solving
the RKHS regularization problem of Eq. (2). The result is for
the case when S = [0, 1]¢, but can be generalized to other
compact spaces with “regular” boundaries relatively easily.
In the following theorem, we assume that S; ~ vs is an
i.i.d. sequence and A; ~ mp(+|S;) for some 7, that selects all
actions with non-zero probability. This assumption basically
means that we have access to the generative model, and is the
case of planning. However, this assumption is not essential,
and we just use it to simplify the proof. We can extend this
result to the case that the agent observes a single trajectory
generated by a fixed policy by having appropriate mixing
condition on the MDP, i.e. learning case (see [26]).

Theorem 1 (L*-bound): Assume that S = [0,1]¢, k €
Lip*ga, C(S,S)), a > d, and Qy is such that TQy € H(=
Hy).* Furthermore, (for the sake of simplicity) assume that
all functions involved in the regression problem (the reward
function, @i, and the result of the optimization problem
(Qk+1) are bounded by some constant L > 0. Let Qr+1
be the solution of (2) with some A > 0. Furthermore,
assume that we use the same number of samples in each
iteration: M; = Ms = ... = Mg. Let mx be greedy
w.rt. the K iterate, Qx. Define Ey = |le_1]|, and let
B = maxo<p<k HT’CQOH;. Then, for any 6 > 0 with
probability at least 1 — 6,

[V =V, <
S S B 97
2{1—7+(1—7)2]7 Fot
o [(Con) 2 ACR) T Lt eslog(1/5)
1—~ -z | ™ My /e M, L*

for some constants C} , and C? , that only depend on p, v,

v and the MDP dynamics and for some universal constants
c1,c2,c3 > 0.

Note that by choosing A = cM; 1/(+d/2) the second
term is made converging to zero with M; — oo at a rate
O(M; 1/(20+d/ a))), corresponding to the optimal regression
rate for smoothness order «. On the other hand, by choosing
K larger one can make the first term as small as desired.
Note that the cost of executing the procedure is O(K M3).
Then given a computational budget 3, one may optimize
K and M; to get the best possible performance. Clearly, it

“4For the definition of the generalized Lipschitz space Lip*, see [27].
5When this does not hold, a truncation argument is needed, but the result
would essentially be left unchanged.

1/2

cost functional (reward function)

Planner
(RFQI, LSTD, ...)

X*
{

S X Gontrol
. € danal
generator

Model Estimator
(LLR, etc.)

Fig. 2. Model-based Reinforcement Learning

suffices to choose K = log(B), hence given the budget B
the performance will be O(B~1/(6(1+d/@))y,

V. MODEL-BASED AND MODEL-FREE REINFORCEMENT
LEARNING FOR VISUAL-SERVOING

In the previous two sections, we introduced a model
estimation method (Section III) and RFQI (Section 1V). De-
pending on whether we use the model estimation method or
not, we will have two different RL approaches for designing
a close to optimal policy (i.e. controller) for the robot. These
modules and their relationship are depicted in Fig. 2.

The first approach, which we call model-free rein-
forcement learning, works by directly collecting D =
{(S1,41,R1,52),...,(Sn,Apn, Ry, Sny1)} where S; are
joint parameters at time step i, A; are the action commands
given to the robot at the same time, and R; are reward
(or cost) function depending on the state transition and the
observed visual features. In other words, R is a function
of X(= F(S)). This reward function is determined by
the designer. Afterwards, one applies RFQI described in
Section IV to find an approximately optimal policy 7 : S —
A. In general, action space A can be low-level commands
(e.g. joint velocity) or higher-level commands (e.g. execute
grasp command for a hand, move toward the goal, etc.). In
our experiments, we just focus on low-level commands.

The second approach is model-based reinforcement learn-
ing where we use D,, = {(S1,X1),...,(Sn,Xn)}
to build an estimate F for visual-motor forward Kine-
matic model of the robot as described in Section III.
We use this estimated model F' to generate D =
{(S1,A1,R1,S}),..., (5, Ap, Ry, S)} set used for train-
ing in RFQI. Note that in this case, we do not directly
gather data from the robot itself, but instead use the estimated
model. Therefore, we can randomly select any S configura-
tion and predict what would be observed X , and based on
that, estimate R. Fig. 2 is a schematic for this method. It
is important to mention that even though the name of the

T
—— Bandwidth: fixed (0.1
- - - Bandwidth: CV

&
o

w
o« IS
T
i i

w
T
i

Root Mean Squared Error
+ =

.ﬁ
o

T

K4
’

i

-
T

2
i

o
@
T

20 30 40 50 60
Model Estimation Sample size

Fig. 3. Visual-motor kinematic model estimation

method is model-based RL, it does not use a priori model of
the robot, but it estimates a model using data and then uses
the estimated model for planning. This scheme is similar
to Dyna-style planning methods common in reinforcement
learning [28].

VI. EXPERIMENT

In this section, we first study the behavior of locally
linear regression model described in Section III. After that,
we study the performance of model-based and model-free
RL, and study their behavior when we change regularization
coefficient A\ and kernel parameter . Our experiments are
performed in MATLAB using Corke’s Robotics Toolbox [29]
and the Epipolar Geometry Toolbox [30].

For all these experiments, we use the Puma 560 model
with an eye-to-hand configuration. To define our visual
features, we use a stationary stereo rig setup. The visual
features are the projections of the end-effector’s position into
the image space of each of those cameras. Therefore, the
feature space is four dimensional (X € R%). The position
of the end-effector has only three dimensions, therefore we
used the first three joints of the Puma arm and S € R3.

For the first experiment, we study the performance of
visual-motor kinematic model estimation described in Sec-
tion III. We sample data coming from a randomly generated
smooth trajectory in joint space and use the suggested
locally linear regression method with a Gaussian kernel to
estimate the model. Afterwards, we compare the accuracy
of estimation. (by evaluating the error at a 1000 randomly
selected points in the joint space.) We repeat this procedure
for different number of samples. The results is shown in
Fig 3. As expected, the error decreases when the number of
samples increases. Moreover, the effect of cross-validation is
observable. It shows that adaptively choosing the bandwidth
of kernels increases the model estimation accuracy.®

For the second experiment, we compare the performance
of a model-based RL, model-free RL with a conventional
linear controller. The problem is defined as visual set-point

6The result of this experiment is an average of 10 runs. We add a Gaussian
noise with s.d. of 0.05 to the generated trajectories.

regulation. The visual features are the coordinate of end-
effector in the image space of the two cameras (X € R*)
and the set-point is X* = [0 0 0 0]7. The discrete-time
control signal is u(t) € {—1,+1} with time step of 0.02sec.
We desire to minimize the number of steps to the goal
from an arbitrary initial position. We formulate this problem
as solving a discounted MDP with v = 0.95 where we
assign R; = —1 whenever || X;y1 — X*||* > 10 and R; =
T Xt+11 X2 otherwise. This @courages the robpt to move
toward the goal as soon as possible. For all experiments, we
use i.i.d. samples from S € U((—1,1)3) for both training
and policy evaluation.

In the case of model-free RL, the robot itself takes random
(i.i.d.) samples from the environment (or likewise we assume
that we have access to the exact generative model of the
robot), and these data are used for RFQL’ In the case of
model-based RL, the robot follows a smooth trajectory (as
in the previous experiment) and build an estimated model
F of visual-servoing forward kinematic. Then it gets i.i.d.
virtual samples from this estimated model to provide data for
RFQI. For our experiments, we generate twice the number
of samples that is used to build F, e.g. if we use 1000
samples to build the estimated visual-motor kinematic model,
we generate 2000 samples for RFQI. Aside computational
issues, the number of true samples would be the right
measure of learning difficulty. Actions in the training set, for
both methods, are generated uniformly. In our experiments,
we re-use the same data in all iterations. The iterations are
limited to K' = 2000, but if the action-value function Q1 is
very close to Q) (empirical norm smaller than 10~?), we stop
the iteration. For this experiment, we use a Gaussian kernel
k((q1,u1), (q2,u2)) = exp(—%)ﬂ{ul:w} with kernel
parameter 02 = 0.3. Also the regularization coefficient is
fixed at A = 0.01.

For the conventional controller, we use the exact local
model of visual-motor kinematic to design the controller.
Defining the visual-motor Jacobian as J(S) = %(SS), the
control signal would be u(t) = ¢(t) = —J*(S) where J(S)
is the pseudo-inverse of the Jacobian at S(t). So here, the
conventional controller does not use any estimated model.
To make these two types of controller (RL-based and linear)
more comparable, we need to make sure both use the same
amount of control signal’s power. The RL policy selects the
control signal u(t) € {—1,+1}3. Therefore, the power of
the signal is 3. For the conventional controller (which is a
linear controller), we normalize its output so that its power
become 3. When the error is large, this modification prevents
the controller to spend so much power. When the error is very
small, it makes the controller act like a switching controller.

Fig. 4 compares the performance of the model-based and
model-free RL methods to the performance of a conventional
linear controller when the number of frue samples changes.
For this experiment, the number of samples is changing from

7In practice, we cannot make a robot to pick i.i.d. samples, but instead
we can follow a smooth trajectory. The difference between i.i.d. samples
and following a single trajectory depends on the mixing behavior of the
corresponding stochastic process.

3l]
Linear controller
4l]
Mogel-based RL
el |
=
2 -6 1
S
s L Model-free RL 1
g
<
gl]
0]
10k]
| 1 1 1 1
200 500 1000 1500 2000 3000 4000
Sample size
Fig. 4. Model-based RL, Model-free RL, and Linear controller without

model selection

around 200 to 4000. As mentioned before, we apply RFQI
with A = 0.01 and 02 = 0.3. Ideally, these value should
depend on the data and the difficulty of the problem (e.g. A
should decrease when the number of samples increases), but
for now we fix them. To compare the results, we generate
1000 randomly generated initial robot’s configurations and
evaluate the performance of these controllers starting from
each of them, and then take the average of all of them.
This determines the performance of any controller. We run
the experiment 10 times. The error bars (or dotted interval)
shows the standard error around the empirical average

The result shown in Fig. 4 indicates that both RL methods
perform well, though their performance is a bit lower than a
linear controller that has access to the true Jacobian of the
robot. One possible reason is that the action space of our
robot is limited to 8 discrete actions. On the other hand, the
action space of the linear controller is much richer (it is a
point in S? - 2-dimensional sphere). The other reason is that
we have not selected the best possible model, i.e. A and o
are not selected optimally.

To study the effect of kernel parameter o and regular-
ization coefficient A on the performance of the RFQI, we
change these parameters and observe their effects on the
performance. We evaluate the performance of 7(:; Q(I?’)‘)),
the greedy policy w.r.t. Qg?’)‘), for several values of ¢ and A
by a Monte Carlo method with 5000 trajectories starting from
a uniformly chosen S(0) initial positions and following the
policy. Fig. 5 shows the performance of policies generated
by RFQI with varying regularization coefficient and kernel
parameter. Lighter regions show higher performance and
darker regions show lower performance. The existence of
a region where the performance is considerably better than
other regions is evident. This region has a moderate values
of A and o2. The performance degradation for very small
values of A is an indication of over-fitting. Over-smoothing
is also observable for large values of regularization coef-
ficient. Although the performance is less sensitive to the
kernel parameter than to the regularization coefficient, poor
performance is visible for very small values of 2.

0.9

0.8

I_//
LIH_—
1
©

0.7

0.6

05

— T
/

N
F2.5
\
03 \/

0.2

N =t

kernel parameter (02)

T
|
| /’I!D/

0.1

0.01 n 2 n
10 10 10 10

1
regularization coefficient (\)

Fig. 5. The effect of changing regularization coefficient (\) and kernel
parameter (o2) on the policy’s performance.

Based on the result of previous experiment, it is suggestive
to generate several RFQI solutions with different ¢ and
A, and then select the best model among them. In this
paper, our model selection method works by running several
trajectories and evaluating the performance of the policy, and
then selecting the statistically best one among them. (We use
empirical Bernstein race model selection method described
in [31].) This needs running the real robot or having an exact
model of it. Here, we assumed that we had an exact model
of it, but we conjecture that it is possible that we perform
the model selection by evaluating policies with the help of
the estimated model F'. For this reason, we just report the
result of model-free RL with an assumption that the exact
model of the robot is available.

In the next experiment, we apply RFQI for 20 models
(different X\ and o), and use the model selection to choose one
of them. For model selection, we put a maximum limit of 100
trajectory samples for each model and the confidence param-
eter = 0.3. (Refer to [31] for details and definition.) After
selecting the best model, we compare it with the conventional
controller by evaluating the performance of 1000 paths with
randomly generated initial states. We run this experiment
10 times. The results is shown in Fig. 6. For comparison,
we also show the performance of model-free RFQI with the
same fixed parameters as in the experiment of Fig. 4. It is
evident that the model selection improves the performance
of the robot. The resulted controller outperforms the linear
controller after about 3000 samples. As before, the error
bars (or dotted interval) shows the standard error around the
empirical average.

VII. CONCLUSION

We introduced two uncalibrated methods for visual servo-
ing. We observed that both model-based and model-free RL
that uses samples in two different ways may perform quite
well without having a priori knowledge about the robot. This
is important in visual-servoing since in many cases we do not
have access to visual-motor kinematic model, but we have
access to the robot and can get samples from it. Also we

-2
3l
Ll
£
% Model-free RL (with model selection)
2 ¢
g -5 ! 1
o
:% L Model-free RL (without model selection)
-6}~ ,' 4
.
.
‘
’
s b
gl . . . | | | |
500 1000 1500 2000 3000 4000 5000 7000
Sample size
Fig. 6. Comparison of model-free RL with and without model selection

with the linear controller

noticed that the performance of the resulted policy depends
on selecting the right function space. A regularization-based
method like RFQI lets us partially solve this problem by
reducing the model selection problem to the selection of the
regularization coefficient A and the kernel parameter o.

There are, however, many important problems that must
be addressed. (1) The first is applying these ideas on a real
robot. We have some partial, but promising, results for model
estimation on a Whole Arm Manipulator (WAM), but we
still need to do more experiments. (2) The second is finding
an efficient way for model selecting in the RL setting. One
possibility is using the estimated model F for evaluating
the performance of a policy. This needs more theoretical
investigation. (3) Another important issue is studying the
conditions where the model-based RFQI may outperform
the model-free RFQI. We believe that this would be the
case when learning the dynamics of visual-motor system is
easier than learning the value function, maybe because of
different regularities in these problems. (4) Finally, extending
the current RFQI to cope with continuous actions would be
important for robotic applications.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robotics and Automation, vol. 12, no. 5, pp.
651-670, Oct. 1996.

[2] F. Chaumette and S. Hutchinson, “Visual servo control, part I: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp- 82-90, Dec. 2006.

[3] ——, “Visual servo control, part II: Advanced approaches,” IEEE
Robotics and Automation Magazine, vol. 14, no. 1, pp. 109-118, Mar.
2007.

[4] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true Jacobian,” in IEEE/RSJ International Conf. Intelligent
Robots and Systems (IROS), vol. 1, September 1994, pp. 186-193.

[5] M. Jdgersand, O. Fuentes, and R. Nelson, “Experimental evaluation
of uncalibrated visual servoing for precision manipulation,” in /EEE
International Conf. Robotics and Automation (ICRA), vol. 4, April
1997, pp. 2874-2880.

[6] H. Sutanto, R. Sharma, and V. Varma, “The role of exploratory move-
ment in visual servoing without calibration,” Robotics and Autonomous
Systems, vol. 23, pp. 153-169, 1998.

[71 J. A. Piepmeier, G. V. McMurray, and H. Lipkin, “Uncalibrated
dynamic visual servoing,” IEEE Trans. Robotics and Automation,
vol. 20, no. 1, pp. 143-147, February 2004.

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

W. J. Wilson, C. C. W. Hulls, and G. S. Bell, “Relative end-effector
control using cartesian position based visual servoing,” IEEE Trans.
Robotics and Automation, vol. 12, no. 5, pp. 684—-696, October 1996.
L. Weiss, A. Sanderson, and C. Neuman, “Dynamic sensor-based
control of robots with visual feedback,” IEEE Journal of Robotics
and Automation, vol. 3, no. 5, pp. 404417, 1987.

B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Trans. Robotics and Automation, vol. 8,
no. 3, pp. 313-326, June 1992.

E. Malis, F. Chaumette, and S. Boudet, “2-1/2-d visual servoing,” IEEE
Trans. Robotics and Automation, vol. 15, no. 2, pp. 238-250, April
1999.

A. M. Farahmand, M. Ghavamzadeh, C. Szepesvari, and S. Mannor,
“Regularized fitted Q-iteration: Application to bounded resource plan-
ning,” in Recent Advances in Reinforcement Learning: Sth European
Workshop, EWRL 2008, Villeneuve d’Ascq, France, June 30-July 3,
2008, Revised and Selected Papers. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 55-68.

L. Wasserman, All of Nonparametric Statistics (Springer Texts in
Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

A. M. Farahmand, A. Shademan, and M. Jdgersand, “Global visual-
motor estimation for uncalibrated visual servoing,” in IEEE/RSJ In-
ternational Conf. Intelligent Robots and Systems (IROS), 2007.

S. Schaal, C. G. Atkeson, and S. Vijayakumar, “real-time robot
learning with locally weighted statistical learning,” in international
conference on robotics and automation (icra2000), 2000.

S. Mannor, 1. Menache, and N. Shimkin, “Basis function adaptation
in temporal difference reinforcement learning,” Annals of Operations
Research, vol. 134, pp. 215-238, 2005.

R. Parr, C. Painter-Wakefield, L. Li, and M. Littman, “Analyzing
feature generation for value-function approximation,” in /ICML, 2007,
pp. 737-744.

D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode rein-
forcement learning,” Journal of Machine Learning Research, vol. 6,
pp- 503-556, 2005.

Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with Gaus-
sian processes,” in ICML ’05: Proceedings of the 22nd international
conference on Machine learning. New York, NY, USA: ACM, 2005,
pp- 201-208.

L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk, A distribution-free
theory of nonparametric regression. ~ New York: Springer-Verlag,
2002.

T. Jung and D. Polani, “Least squares SVM for least squares TD
learning,” in ECAI, 2006, pp. 499-503.

M. Loth, M. Davy, and P. Preux, “Sparse temporal difference learning
using LASSO,” in [EEE International Symposium on Approximate
Dynamic Programming and Reinforcement Learning, 2007.

D. P. Bertsekas and S. Shreve, Stochastic Optimal Control (The
Discrete Time Case). Academic Press, New York, 1978.

B. Scholkopf and A. Smola, Learning with Kernels. Cambridge, MA:
MIT Press, 2002.

Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least squares
algorithm,” IEEE Transaction on Signal Processing, vol. 52, no. 8, pp.
2275-2285, 2004.

A. Antos, R. Munos, and C. Szepesvdri, “Fitted Q-iteration in
continuous action-space MDPs,” in Advances in Neural Information
Processing Systems 20 (NIPS-2007), 2008, (in print).

D.-X. Zhou, “Capacity of reproducing kernel spaces in learning
theory,” IEEE Transactions on Information Theory, vol. 49, pp. 1743—
1752, 2003.

R. S. Sutton, C. Szepesvdri, A. Geramifard, and M. Bowling, “Dyna-
style planning with linear function approximation and prioritized
sweeping,” in Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, 2008.

P. Corke, “A robotics toolbox for MATLAB,” IEEE Robotics and
Automation Magazine, vol. 3, no. 1, pp. 24-32, Mar. 1996.

G. Mariottini and D. Prattichizzo, “EGT: a toolbox for multiple
view geometry and visual servoing,” IEEE Robotics and Automation
Magazine, vol. 3, no. 12, December 2005.

V. Mnih, C. Szepesvdri, and J.-Y. Audibert, “Empirical bernstein
stopping,” Proceedings of the 25th Annual International Conference
on Machine Learning (ICML 2008), pp. 672—679, 2008.

