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Abstract— Reinforcement learning with linear and non-linear ~ Even though penalized least-squares regression is one of th
function approximation has been studied extensively in théast  most successful approaches to supervised regression, it is
decade. However, as opposed to other fields of machine leangi surprising that it has not been thoroughly investigated in

such as supervised learning, the effect of finite sample hason L .
been thoroughly addressed within the reinforcement learmig RL. Work similar to ours includes [11] and [13]. They do

framework. In this paper we propose to useL? regularization ~ Not, however, provide an explicit performance analysis lik
to control the complexity of the value function in reinforcement  this work. Moreover, [11] just works for the deterministic
learning and planning problems. We consider the Regularizé  transitions with a fixed policy, whereas we consider the
Fitted Q-Iteration algorithm and provide generalization bounds control problem with stochastic transitions.

e ccout or smal ample sies. Pl a ealstc il Here we extend ihe fited Q-fleration algoritim of [
regularization procedure. and let it use penalized least-squares, a regulariza@sed
algorithm, for fitting value functions. This way we borroveth
I. INTRODUCTION strength of a state-of-the-art supervised learning ambroa
Regularization has proven an effective tool in machingelp solve learning and planning problems more efficiently.
learning and in particular in supervised learning. The maiwe call this algorithm Regularized Fitted Q-lteration (RFQ
idea is to consider the learning problem as an optimizatione develop specific formulae for kernel-based RFQI. Our
problem where one minimizes the sum of an empiricahain theoretical results bound the quality of the solutions
error and a complexity penalty, the regularizer, that penafound given that the algorithm spends a finite amount of com-
izes complex solutions. The tradeoff between the empiricglutational resources on the task. The strength of the approa
error term and the penalty term is controlled by a singlés that the complexity of the function class (and thus the
numerical value: the regularization coefficient. When th@erformance) can be controlled by tuning the regulariratio
parameter is chosen in an appropriate way (for example hyefficient. We argue that non-trivial performance gaires ar
cross-validation or complexity regularization), the léag  possible if one chooses the regularization coefficient in a
procedure is known to adapt to the complexity of the targetata-dependent manner. We show this empirically in our
function automatically, converging almost as fast as if thexperiments. Although finite-sample performance of fitted Q
model was known beforehand (e.g. [10]). iteration has been considered earlier [1], to our best knowl
Recently the problem of tuning function approximators hasdge this work alongside [9] are the first work that address
received considerable attention for the solution of Markof¥inite-sample performance ofragularized RL algorithm.
Decision Processes, especially in the reinforcementile@rn  Both planning and learning can benefit from regulariza-
(RL) community. For example, [14] considered parametetion. In many real world planning problems of interest, the
ized function approximation architecture where the paransimulation time is limited and a policy has to be found
eters are changed to better minimize the Bellman residuadlatively quickly. In such problems, a simulator is avail-
error, and [18] constructs new basis functions from the-Bellable to generate samples from a typically high dimensional
man residual in fitted value iteration. In other approachestate space. For example, in control of complex networks
non-parametric regression is used where the function repr@.g., power and communication networks), the only way
sentation has the potential to adapt to the actual diffiaofity to compute a good policy is through simulation. Simulating
the problem. Examples of this approach include [12] wherg complex network is computationally demanding since it
support vector machines are used to represent policies in eiuires a discrete events simulations [16]. Using RFQI
approximate policy iteration procedure, the tree-redoess algorithm that takes the finiteness of the available daia int
based fitted Q-iteration algorithm of [8], or the GPTDaccount is therefore relevant for planning as well as leayni
algorithm of [7] that builds on Gaussian processes regrassi
In this work, we consider a non-parametric regression ap- Il. BACKGROUND AND NOTATION
proach based on penalized least-squares regression methodVe briefly review a few concepts and notations from
, _ analysis and Markovian Decision Processes (MDP). We refer
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If1l5., = [ 1f(s)[Pv(ds). We shall also writg| f||,, to denote Fitted Q-lteration (D,K,Qo)
the L2(v)-norm of f. We denote the space of bounded | / D: samples
measurable functions with domait' by B(X), and the II' K number of iterations
space of measurable functions with boulid K < oo Il Qo: Initial action-value function
by B(X; K). Q@ — Qo /I Initialization
A finite-action discounted MDP is defined by a quintuple | for #=0to K —1do
(X, A,P,S,v), where X is the (possibly infinite)state Q' — FitQ(Q, D, k)
space, A = {ai,aq,...,an} is the finite set ofactions, Q— Q'
P: X x A— M(X) is thetransition probability kernel, end for
P(:|x,a) defining the next-state distribution upon taking return @

actiona in statex, S(-|z,a) gives the corresponding distri-
bution ofimmediate rewards, and~ € (0, 1) is the discount
factor. We make the following assumptions on the MDP:

Assumption A1 X is a compact subset of thiedimensional it will be useful to define the optimal action-value function
Euclidean space. We assume the expected immediate rewaisz; a):

r(z,a) = [rS(dr|z,a) are bounded byRmax: [|7]le < Q" (z,a) =sup Q™ (z,a).

Rmax- "

Fig. 1. Fitted Q-Iteration

Further, we say that a deterministic poligyis greedy w.r.t.
A stationary Markov policyr : X — M(A) is defined as (with respect to) an action-value functiap € B(X x A)
a time-independent (measurable) mapping from the curreqhd writer = #(;Q), if, forall z € X anda € A, n(z) €
statex to a distribution over the set of actions-|z). A argmax, 4 Q(z,a). The Bellman optimality operatof :
policy is deterministic if the probability distribution noen- B(X x A) — B(X x A) is defined by
trates on a single action for all states. Deterministiactatry
Markov policies will be identified with mappings from states  (7Q)(z,a) = r(z,a) + / max Q(y,a’)P(dy|z,a).
to actionsrt : X — A. In the rest of this paper, we use the a'eA
term po||cy to refer to Stationary Markov po"cies_ This operator T is a contraction operator w.r.t. the
The value of a policyr when it is started from a state SUpremum-norm with index. Moreover, the optimal action-
z is defined as the total expected discounted reward that{glue function is the unique fixed point af: TQ* = Q.

encountered while the policy is executed, i.e. Starting from anyQ € B(X x A),
oo Qr+1 =TQk
T _ t _
Vi(z) = Ex [ZOV Ry| Xo = x] : is thus guaranteed to converge (at an exponential rat@} to
t=

This procedure is calledalue iteration.

Here R; denotes the reward received at time st&p Throughout the papeF C {f : X — R} will denote

R, ~ S(-|X:, A¢) and X; evolves according taX;;; ~ some subset of real-valued functions over the state-space
P(-|X:, Ar) where A; is sampled from the distribution X. For convenience, we will treat elements & as real-
assigned to the past observations by For a policy =, valued functionsf defined overX x .4 with the obvious

Ay ~ 7(-|X;), while if = is deterministic then we write identification f = (f1,..., fu), f(z,a;) = fi(x), j =

A; = w(X;). The functionV7™ is also called the state- 1,...,M. The setFM will denote the set of admissible
value function of policyr. Closely related to the state-valuefunctions used in the optimization step of our algorithm.
functions are the action-value functions, defined by

IIl. ALGORITHM
- N The algorithm studied in this paper is an instance of
Q"(z,a) = Ex Z'V Re| Xo = 2,40 =al. the generic fitted Q-iteration method, whose pseudo-code is
t=0

shown in Fig. 1. The algorithm attempts to approximate the
It is easy to see that for any poliey, the functionsi’™ and optimal action-value functio®* and mimics value iteration.

Q™ are bounded byR,,.x/(1 — 7). Because computing the effect of the Bellman operator ap-
Given an MDP, the goal is to find a policy that attains thélied to an action-value function involves evaluating ahhig
best possible values, dimensional integral, we use a Monte-Carlo approximation
together with a regression procedure. For this purpose a set
V*(x) =sup V™ (x), of samplesD is generated:
™

— / !
for all statesr € X'. FunctionV* is called the optimal value D ={(&, 41, B, X)), (X, A, B, Xy}

function. The policy that attains the optimal value funatio In this paper for the sake of simplifying the analysis we
any statex € X is called the optimal policy, i.e. iV (z) = assume that the actions and next states are generated by
V*(x) for all z € X. Note that the optimal policy is not some fixed stochastic stationary poligy: A; ~ m(-|X3),
necessarily unique. In order to characterize optimal pdic X/ ~ P(-|X;, A:), Rt ~ S(+|X¢, At). The state-marginal of



v is denoted by . We assume that is a strictly positive wherea = (ay,.. ., on,C)T are the coefficient that must be
measure, i.e., its support & x A. Intuitively, this ensures determined. Let us assume th@f was obtained previously
that the samples cover all state-action pairs. In partideia in a similar form:

this we must have that,g = minge 4 inf e m(alz) > 0. Ni—1+Mj_y
The fitting procedure that we study in this paper is Q(z,a) = Z Oéz('li)Nk,l-i—lk((Xi?Ai)? (z,a)),
penalized least-squares. Assuming that in ke iteration i=Np_1
we use samples with indeX, < i < N+ My = Niy41—1, . i
the (k + 1)thpiterate is obtaikned by g § b and let us collect the coefficients into a veatdf) € RMk-1,
Replacing@ in Eqg. (2) by its expansion and using RKHS
QK41 = argmin [Lk(Q) + /\Pen(Q)} , (1) properties, we get
QGJ:Z\/I
1 2
where aF D) = argmin — Hr +yKta® — KaH +a' Ka,
aelek ]\/[k
A 1 Np+M—1 . 9 (3)
Ly(Q) = A > [Riﬂglngk(Xi,a )—Q(Xi, A", with K € RMxXMe | g+ g RMix My
i=Nj,
(Klij = k(Zic14n.Zj—14N,),

andPen(Q) is a penalty term and > 0 is the regularization N *)
coefficient! The first term is the sample-based least-squares KTy = k(ZzeHNka Zj—1+N;H)7
error of usingQ to predictR; + ymaxqca Qr(X;,a’) at v oA B e 4 (R)
(X;, A;). This term is the empirical counterpart to the IossWhereZ] = (X5, 45), 27 = (X5, A7),
AW = argmax Qi (X!, a),
Lp(Q)=E [(Rz- + 7y max Qr(Xj, ) - Q(Xi, A))*] . J b Qn(X5,a)

The minimizer of this loss function is the regression funcfjl r = (Ry
tion E[R; +ymaxeyea Qr(X],a )| X; =2, A, =a] = "
(TQr)(x,a). As the number of samples grows to infinity Solving Eg. (3) fora we obtain
the empirical loss converges 0, and therefore, we hope k+1) 1 + K
that the iteratel);1 converges tdl'Qy. For assuring th;c, "t = (K + M) ™ (r + 7K o).
one needs to prevent overfitting or over-smoothing. This iEhe computational complexity of iteratidnwith a straight-
the job of the second term on the right hand side of (1). Thiorward implementation isO(M}) as it involves the in-
term regulates the complexity of solutions. Choosing adarg version of a matrix. Thus, in order to understand how the
A means searching in a smaller space of functions and viedgorithm behaves it suffices to understand how the error
versa. behaves after a certain number of iterations. This is what we
Considering the discussion in the previous paragrapbp in the next two sections.
a viable approach is choosing a large (possibly infinite The choice of the regularization coefficient and the RKHS
dimensional) spacé™ and using regularization to control itself is still a problem. For the case of Sobolev space,
its complexity. WhenF* is a Sobolev-space arittn(Q) is  this corresponds to the choice of the smoothness order of
the corresponding Sobolev-space norm (the squared normtbé space. We need a model selection procedure to select
the generalized partials @), this optimization leads to thin these parameters. The approach common in regression can
plate spline estimates, popular in the non-parametriisétzt ~ be followed here, too: Try different smoothness orderst{er t
literature [10]. Nevertheless, Sobolev space is not thg onparameter that describes the RKHS) with different regular-
possibility. It is a particular case of a reproducing kerneization coefficients and choose between them using a hold-
Hilbert space (RKHS). In an RKHS, we start with a Merceout set. This leads to estimates whose rate of convergence
kernel functionk, and setPen(Q) to be the norm of) in  has the optimal order and scales with the actual roughness,
‘H, the RKHS underlying [19]. This way we obtain Pen(TQy).

Qi1 = argmin [L(@Q) + A Q15| @) IV. ERROR PROPAGATION
Qer In order to analyze Fitted Q-iteration we rewrite it in the
According to the Representer Theorem (e.g., see [19])yeveform
solution to Eq. (2) is the sum of kernels centered on the

T
.. '7RNk+Mk_1) .

observed samples: i.e., Q1 =TQr—er (k20); and e =Q"~Qo. (4)
Ny+Mj,—1 Note that these equations define the error sequepdey, :

Q(z,a) = Z i N +1k (X3, 43), (2, a)), X x A — R) from the sequence of iteratedg);}, and
i=Npg not vice versa (except far_,, the "initial error”, which is

introduced just for notational simplification). Here we are

1No‘te that in practice one would generate samples as-negﬂzgisl, be., interested in studying how the errm{sk} influence the
there is no need to generate and store all the samples. Hoviigalso

possible to reuse the samples if sample generation is eixpems such a performance Of the_polic_y greedy W-r'@K (K > 0 is
case the analysis needs to be changed slightly. the number of iterations in the algorithm; see Fig. 1). The



idea is that the regression procedure controls the sizeeof thon-zero probability. This assumption basically means tha
error functionsz,, hence it must be possible to obtain goodve have access to the generative model, and is the case of
policies eventually. Fok > 0, let 7, be the greedy policy planning. However, this assumption is not essential, and we
w.rt. Qx: m = 7(+; Q). Then our goal is to bound the norm just use it to simplify the proof. We can extend this result to
of V* — V7« (because of the definition of the optimal valuethe case that the agent observes a single trajectory gederat
function, this quantity is guaranteed to be non-negative). by a fixed policy by having appropriate mixing condition on
Recall that v denotes the distribution underlyingthe MDP, i.e. learning case (see [1]).
{(X:, A;)}. For the sake of flexibility, we allow the user Theorem2: Assume that X = [0,1]¢ k €
to choose another distributiop, € M(X), that is used in Lip*(s,C(X, X)), s > d, and Qi is such that
assessing the procedure’s performance, e.g. the stationdiQ, € H(= Hx).2 Furthermore, (for the sake of simplicity)
distribution induced by the optimal policy. The main resuliassume that all functions involved in the regression prable
of this section is the following theorem that bounds the loshe reward functiong),, and the result of the optimization
of using the learned policy, measured|by, ,, as a function problem(@x 1) are bounded by some constant- 0.3 Let
of the losses of the solutions of the regression problentg;.; be the solution of (2) with som& > 0. Then
solveq While_ running the_ algorithm, measured|py, . The ) ) oy L e2log(1/6)
proof is omitted from this paper. 1Qk+1 = TQkll, < 2T QI3 + 57 RN
Theorem 1 (LP-bound): Consider a discounted MDP with . r F
a finite number of actions. Let> 1. Assume thaf);, ande;, with probability at least — ¢, for somecy, c3 > 0.
Note the trade-off in the bound: increasifgincreases

satisfy (4) and thatr, is a policy greedy w.r.tQ. Fix K > : : .
0 Df);-( ) - k P )_/g B y @ the first term, but decreases the second. The optimal choice
. Define Ey = |[le_1f|, andEx = maxo<p<k [|ek], - " bal b h d d
) 6!%’1) 4O that strikes a balance between these two terms. It depends on
Then there exist constants consta@lg, ~ and Cy’;, the number of sampled/,, the complexity of the target
only depend orp, v, v and the MDP dynamics such that - ¢nction 7@, measured byiTQx %, the dimension of the
. problem d, and some notion of smoothness measured by
V¥ Eg+ s. With A = M, /0% the rate of convergence is
O(Mk_l/(“rd/s)). In fact, when we have a Sobolev space
_ (1,13 (2,1) %) _ with smoothness degree one can show = 2x and this
+ ((1 NG )7+ (Coi7)7 ) Bxe rate will be the optimal rate for regression for smoothness
Theorem 1 shows that if the error sequenrgeis small, +. As an immediate corollary of this result and Theorem 1
the error between the optimal value functidft and the we get the following result, assuming that in each iteration
value of our estimated policy " is small too. We can use We are using the same regularization parameter.
standard PAC results to give a high probability bound on the Corollary 3 (Z~-bound): Assume that the conditions of
. - . the previous theorem hold and we use the same number
magnitude of each; (and consequentlyx) as a function

. : of samples in each iteratiom/; = My, = ... = Mkg.
of the available data. We provide such a bound for the caset . be greedy w.r.t. thek*® iterate, Q. Define B =

of RKHS in the next section. _ _ | Maxg<k< K ||T’“Q0||;Z. Then, for anys > 0 with probability
Theorem 1 suggests a model selection mechanism: Singgeleast] — o

our goal is to minimiz& g, we can use different regulariza-

Ve — v

< -
pe = =)

tion coefficients and/or kernel parameter in solving Eqirf1) v —vm|, < 2 S [7’5 el +
such a way that alt; remains as small as possible. Although =)

we cannot calculate;, directly, we can still use the empirical L' cslog(K/6)]M?
norm as an estimation of its norm. This can be done by doing C|arB+ My\d/s T M, L4 } '

a cross-validatoin at each iteration. Model selection ahea

iteration is important because the appropriate regulioiza WhereC' = (1= (CSEN 2 +9(CE)3 andey, ea, 05 > 0
coefficient and even the function space (which is determingdf€ universal constants.
by the kernel parameter) may change during iterations. Again, by choosing\ = cM; *) the second term

is made converging to zero witd/; — oo at a rate
V. L?-BOUND FOR REGURALIZED oMy /0Ty " corresponding to the optimal regression

KERNEL-BASED REGRESSION rate for smoothness order= 2x. On the other hand, by let-

In this section we assume thaj,; is obtained by solving ting K approach infinity, one can make the first term as small
the RKHS regularization problem of Eq. (2). The followingas desired. Note that the cost of executing the procedure is
result can be obtained by generalizing Theorem 21.1 of [16)(K M?). Then given a computational budg8t one may
to arbitrary RKHS with smooth kernel functions, combiningoptimize K* and M, to get the best possible performance.
it with Prop. 3 of [20]. The result is for the case whenClearly, it suffices to choos& = log(B), hence given the
X = [0,1]%, but can be generalized to other compact spac&idgets the performance will be)(5~1/(60+d/=)),

with “regular” boundaries relatively gasﬂy. .“.1 the follavg 2For the definition of the generalized Lipschitz spdde* see [20].
theorem, we assume thaf; ~ vx is an iid. S.equenf:e SWhen this does not hold, a truncation argument is neededhburesult
and A; ~ m(-| X;) for somem, that selects all actions with would essentially be left unchanged.

1/(14+d/



VI. VISUAL-SERVOING PROBLEM MatLab, Corke’s Robotics Toolbox [6], and the Epipolar

By considering a visual-servoing problem as our experG€0ometry Toolbox [15]. _ . .
ment, we study the effect of regularization coefficient and '€ goal of the first experiment is studying the effect of
kernel parameter on the performance of the RFQI algorithnf?€ kernel parameter and the regularization coefficient

Also we compare its performance with a conventional visuaP" the performance of the FQI. We evaluate the performance
servoing controller. of #(; QK ), the greedy policy w.r.tQ i, by a Monte Carlo

Visual servoing is the task of controlling the motion of amet_h.od using000 ra_ndom trajectories starting from a !nitial
robot using vision data ([5]). Visual data can include inputposmons chosen uniformly at random and then following the

like the position of the end-effector on visual input or thePClicy- -

image of an external object on the robot-mounted camera,F19- 2 shows the performance of policies generated by
Forward kinematic model of the robot, cameras’ parameter@ Q! a@s a function of the regularization coefficient and the
and the relative position of objects in the world define &€nel parameter. Lighter regions show better performance
visual-motor kinematic modeKX = f(q) whereq € R? and darker regions show worse performance. A prominent
is joint variables for a robot withi degrees of freedom region where the performance is considerably better than
and X € R™ is the vector of visual features. The aim ofother regions is evident. This region has moderate values

: ) _
visual servoing is to find a control signalt) that changes ©f A and o”. The performance degradation for very small

¢ over time so that some objective function is minimized/@lues of A is an indication of over-fitting. Under-fitting is
(e.g.e(t) = X(t) — X*) goes to zero asymptotically. also observable for large values of regularization coeifici

A conventional controller design methodology uses locdlthough the performance is less sensitive to the kernel
model of visual-motor kinematic to design the controllerParameter than to the regularization coefficient, poor per-
Defining the visual-motor Jacobian a&q) = ag(q) the formance is visible for very small values of. Such values

q 1

5 S
control signal would beu(t) = ¢(t) = —J(q) whereJ(q) of o~ lead to over-fitting,

is the pseudo-inverse of the Jacobiang@f). Nevertheless, 'tFr:gé e3m c_cr> .Tglaée;n;?:.nprzrggrmggg?sgre;gglngﬁfnpga
there are at least two problems with conventional contrelle Wi pir ' ! !

One is that they need to know the dynamics of the systerﬁs.ee [17]) to the perfor_m_ance of a cc_)nventl_onal controller
when the number of training samples is varying.

There are adaptive methods that can partially remedy this . . .
problem. The other more important problem is that they are The problem formulation for the RL prablem is a vari-

usually local controllers and cannot benefit from long hamiz ation of the total time to the goal. To compare these two

plans. Therefore, one can expect that their performan(?gntm”ers’ we need to make sure both controllers use the
wouloi not be opti’mal because of their myopic design. same amount of power. The RL agent’s policy selects the

- control signalu(t) € {—1,+1}3. Therefore, the power of

In these experiments we apply the RFQI method to desi : : . L
penm bRly Q o qﬂe signal is 3. For the conventional controller (which is a
controller for the visual-servoing task. The problem isuais . L :
linear controller), we normalize its output so that its powe

set-point regulation for th@uma 560 robotic arm with an . . e
P g %}aecome 3. When the error is large, this modification prevents

eye-to-hand stationary stereo rig configuration. The Visu )
Y y 9 g e controller to spend so much power. When the error is very

features are the coordinate of end-effector onto the ima% . . o
space of these two camerak (€ R?) and the set-point is mall, it makes the controller act like a switching contall
For this experiment, the humber of samples is changing

* T
())(f tr;e [(r)ogoq[ (z)i]nd \t/xz Z?Svcerea}[g_:g;setgoit?;g;ieensazg)rezdOrprom around700 to 7000. We apply RFQI for 20 models
3 Si9 . .~ (different A\s andos), and use the model selection to choose
{—1,+1}° with time step of0.02sec. We desire to minimize . . T
one of them. For model selection, we put a maximum limit

I e f eps e g o iy il bt 1100 ety ampesfor cach ol (it 0 (17 o
+ = 0.95 where details). Aft_er selecting the best mod_el, we compare it with
the conventional controller by evaluating the returni660
{—1, if || X1 — X2 > 10, randomly selected trajectory paths. We run this experirfent
Ry = times. The error bars (or dotted interval) shows the stahdar
error around the empirical average.
This encourages the robot to move towards the goal as soonThe result shown in Fig. 3 indicates that the RFQI with
as possible. a model selection procedure generates competitive pslicie
For all experiments, we use i.i.d. samples fraqme  Even when the number of samples is not so large, it performs
U((—1,1)3) for both training and policy evaluation. Ac- better than the conventional controller. Note that we do not
tions in the training set are generated uniformly. In ounecessarily claim that our controller figtter than the usual
experiments, we re-use the same data in all iterations. Theactice in visual-servoing research since we have nd trie
iterations are limited toK = 1000, but if the action- hard to optimize the conventional controller, but the clam
value functionQy, is very close toQ (empirical norm that the RFQI's solution performs comparably well without
smaller thanL0~), we stop the iteration. We use a Gaussiamising any domain specific knowledge.
kernelk((q1,u1), (g2, us2)) = exp(—w)l{ulzw} with In summary, we observed that RFQI that just uses samples

20
different kernel parameters? in all experiments. We use can perform quite well without explicitly using the dynamic

1 i
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Fig. 2. The average return of policies computed using RFQ amction

of the regularization coefficient\j and the kernel parametes<).

of system. This is important in visual-servoing since in
many cases we do not have access to visual-motor kinematic
model, but we have access to the robot and can get sampIE%
from it. Also we noticed that the performance of the resultedy;
policy not only depends on the efficient use of data (which a
method like RFQI with its optimal convergence rate can dof®!
well), but also depends on selecting the right function epac

A regularization-based method like RFQI lets us partially[6]
solve this problem by reducing a part of model selection
problem to the selection of the regularization coeffici@ihis
emphasizes the importance of effective model selection.

VII. DISCUSSION

In this paper we proposed to use penalized least-squares as
the regression algorithm used in fitted Q-iteration for sajv
learning and planning problems. The main idea is that
penalized least-squares is a powerful method of regression
which, when used with a model selection mechanism, cdio]
adapt to the difficulty of the regression problem. By appdyin
this method to a visual-servoing problem, we showed that
can give competitive results for a real-world problem.

In our future work, we intend to extend the proof t
the case of learning. Also efficient model selection mec
anism for the case of single trajectory path needs more
attention. Adapting to the situation when the data lies ol
a low dimensional sub-manifold of the observation space
or when certain variables are irrelevant is an importants]
issue for many real-world problems. Using'-penalty in
a LASSO-like procedure (e.g., [4]) may prove to be usefulsg)
Another important research topic is to optimize the sample
distribution. One idea is to use the estimated action-valué’]
function while running the algorithm to actively choose the
most informative samples for the next iteration. Finaky,us
note that the extension of our results to the learning soeenar
when the data consists of a representative trajectory oesorpg

behavior policy looks possible along the lines of [2].
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