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Department of Computing Science
University of Alberta
Edmonton, Canada, T6G 2E8
e-mail: {amirf,szepesva}@ualberta.ca

The date of receipt and acceptance will be inserted by the editor

Abstract We consider the problem of model selection in the batch (offline, non-interactive) rein-
forcement learning setting when the goal is to find an action-value function with the smallest Bell-
man error among a countable set of candidate functions. We propose a complexity regularization-
based model selection algorithm, BErMin, and prove that it enjoys an oracle-like property: the
estimator’s error differs from that of an oracle, who selects the candidate with the minimum Bell-
man error, by only a constant factor and a small remainder term that vanishes at a parametric
rate as the number of samples increases. As an application, we consider a problem when the true
action-value function belongs to an unknown member of a nested sequence of function spaces. We
show that under some additional technical conditions BErMin leads to a procedure whose rate
of convergence, up to a constant factor, matches that of an oracle who knows which of the nested
function spaces the true action-value function belongs to, i.e., the procedure achieves adaptivity.

Key words Reinforcement learning, model selection, complexity regularization, adaptivity, of-
fline learning, off-policy learning, finite-sample bounds

1 Introduction

Most reinforcement learning algorithms rely on the use of some function approximation method.
In general, their performance will be largely influenced by what function approximation method
is being used and how it is configured. Current practice is that the user of the algorithm decides
about both the method and its configuration. For example, the user may opt for using linear
function approximation (cf. Chapter 8 of the book of Sutton and Barto 1998). To configure the
linear function approximation method, the user must decide about the number and the nature
of basis functions. As another example, the user may also decide to use a neural network-based
function approximation method (e.g., Riedmiller 2005). In this case, the user should determine
the architecture of the network. If the user elects to use a nonparametric regularization-based
method (e.g., Engel et al. 2005; Jung and Polani 2006; Loth et al. 2007; Farahmand et al. 2009b;
Taylor and Parr 2009; Kolter and Ng 2009), the regularization coefficient and kernel (or other)
parameters should be selected. From a general viewpoint, the decision of which method (linear
vs. non-linear, parametric vs. non-parametric) to use is not different from that of how to tune a
particular method.

Although good rules of thumb may exist of how to tune a particular method, or which method
to use in a particular situation, there is no guarantee that a rule of thumb will give good results
on the problem that the user wants to solve. A superior approach is to choose and configure the
method based on the data. To address the issue of data-based tuning in a unified framework we
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assume that the user enumerates the list of possible configurations, so the problem becomes that
of automating the choice between a large number of solution candidates. The advantage of this
approach is that it abstracts away the details of how the solution candidates are generated and
is thus generally applicable. Another advantage is that, as our results show, strong theoretical
results can be proven if an appropriate selection procedure is used.

In this paper the above plan is carried out in the following context: we assume the batch learning
scenario when we are given a representative dataset Dn of sampled transitions from a Markovian
Decision Process (MDP), the goal being to find a good policy of the MDP (Szepesvári, 2010).
Following previous works (e.g., Ernst et al., 2005; Riedmiller, 2005; Lagoudakis and Parr, 2003;
Antos et al., 2007, 2008b; Xu et al., 2007; Antos et al., 2008a; Farahmand et al., 2009b), instead
of directly working with policies, we consider the problem of finding an action-value function
with a small (integrated, squared) Bellman error, which is supposed to facilitate the search for
a good policy: When the Bellman error of an action-value function is zero (or very small) an
optimal (respectively, good) policy can be obtained from the action-value function with minimal
effort (some alternatives to this approach will be discussed at the end of this work). As suggested
beforehand, to abstract away the details of the learning algorithms, we assume that we are given
a list of action-value functions Q1, Q2, . . . and reduce the problem to that of selecting the function
from this list with the smallest Bellman error with the help of the dataset Dn.

In supervised learning, the classical method to find the candidate with the smallest risk amongst
some functions given a finite amount of data is complexity regularization (Barron, 1991; Bartlett
et al., 2002; Wegkamp, 2003; Lugosi and Wegkamp, 2004). A straightforward adoption of complex-
ity regularization to our problem suggests the following procedure: First, assume that data Dn is
independent of the candidates Q1, Q2, . . .. Further, assume that data-based estimates BEn(Qk) of
the respective Bellman errors of the candidates are available. Then choose

k̂ = argmin
k≥1

[
C1 BEn(Qk) + C2

pen(k)

n

]
,

where C1 ≥ 1 and C2 > 0 are appropriate constants and pen(k) is a suitable complexity penalty,
such as pen(k) = ln(k).

In the regression context, BEn(Qk) would stand for the estimate of the prediction loss of Qk.
For example, if loss is measured by the expected squared prediction error, one straightforward
possibility is to estimate the loss of Qk by averaging the squared prediction errors as measured
according to Dn. These estimates will have zero bias and a small variance that scales with 1/n, from
which it follows easily that the price paid for not having access to the true losses is negligible (as
follows immediately from our umbrella result, Theorem 1). The penalties are included to prevent
overfitting: Without the penalties, given P candidates, one would suffer an optimistic selection
bias of order

√
log(P )/n. Thus, in the limit of a very large number of models, the penalty is

necessary to control the selection bias (but it also holds that for “small” P the penalties are not
needed).

In a reinforcement learning context, the main issue is the construction of appropriate estimates
of the Bellman error. To explain the main idea of our procedure, remember that the (integrated
squared) Bellman error of Qk is defined as ‖Qk − T ∗Qk‖2ν , where T ∗ is the Bellman optimality
operator underlying the unknown MDP and ν is the distribution of the state-action pairs in the
sample. The main idea of our procedure is to estimate T ∗Qk using a regression method and
then estimate the Bellman error of Qk based on the new estimate. In order to preclude overly
optimistic estimates, the error of estimating T ∗Qk is also incorporated into the estimate of the
Bellman error. Plugging the so-constructed estimate into the above general method leads to our
new method, BErMin, (Section 4).

Our main theoretical result ( Section 5.2, Theorem 2) shows that BErMin has an oracle-
like property in the sense that it selects the model with the minimum Bellman error up to a
multiplicative constant and some additional terms that converge to zero. One particular application
of this result is presented in Section 5.3, where we assume that as k increases the candidate
generation process searches in function spaces of increasing complexity. Then, for k small, the
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candidate Qk is expected to underfit (i.e., its approximation error will be large), while for k large,
the candidate Qk is expected to overfit (i.e., fit to the noise in the training data). The question
is if in this case BErMin leads to a method which automatically finds the best value of k. In
particular, a procedure is called adaptive, if the price paid for not knowing the best value of k is
negligible as compared to the loss suffered by a procedure with oracle knowledge. Our result in
Section 5.3 shows that the procedure built on BErMin posses this property.

In addition to the above results, we provide some auxiliary results that might be of indepen-
dent interest. In particular, Theorem 1, which was mentioned previously, is an umbrella result for
complexity-regularization-based model selection, and its application leads to Theorem 2. Theo-
rem 1 is inspired by Theorem 3 of Bartlett et al. (2002): our result is an abstract reformulation
of their result, the purpose being to broaden the applicability of their result beyond supervised
learning. In the appendix we provide noncentral tail inequalities for Hidden Markov Processes
that help us to obtain fast rates (Lemma 2 in Appendix C). Finally, in Section D we provide a
procedure to estimate the excess risk of a regression problem and prove its correctness. Interesting
on its own, this procedure is needed by BErMin.

In the next two sections we start with a brief review of the necessary background (Section 2),
followed by a formal definition of the learning problem (Section 3).

2 Background

In the first part of this section, we provide a very brief summary of some of the concepts and
definitions from the theory of Markov Decision Processes (MDP, Section 2.1) and reinforcement
learning (RL, Section 2.2). However, we assume that the reader is familiar with these concepts
and so the purpose of the section is merely to introduce the notation used. For further information
about MDPs and reinforcement learning the reader is referred to the books by Bertsekas and Shreve
(1978); Bertsekas and Tsitsiklis (1996); Sutton and Barto (1998); Szepesvári (2010). In addition
to the background on MDPs, in Section 2.2 we introduce our assumptions on the learning scenario
considered, as well as some less standard notations. Thus, readers are advised to pay some extra
attention to the second half of this section.

2.1 Background on Markov Decision Processes

We start with the definition of Markovian Decision Processes:

Definition 1 A finite-action discounted MDP is a 4-tuple (X ,A, P, γ), where X is a measurable
space of states, A is a finite set of actions, P is a mapping with domain X ×A, and 0 ≤ γ < 1 is
a discount factor. Mapping P evaluated at (x, a) ∈ X ×A gives a distribution over R× X , which
we shall denote by P (·, ·|x, a).

An MDP together with an initial distribution P1 of states encode the laws governing the
temporal evolution of a discrete-time stochastic process controlled by an agent as follows: The
controlled process starts at time t = 1 with random initial state X1 ∼ P1 (here and in what
follows X ∼ Q denotes that X is drawn from distribution Q). At stage t, action At ∈ A is selected
by the agent controlling the process. In response, the pair (Rt, Xt+1) is drawn from P (·, ·|Xt, At),
i.e., (Rt, Xt+1) ∼ P (·, ·|Xt, At), where, Rt is the reward that the agent receives at time t and Xt+1

is the state at time t+ 1. The process then repeats with the agent selecting action At+1, etc. The
return underlying the process is the discounted sum of the rewards, R =

∑∞
t=1 γ

t−1Rt.
In general, the agent can use all past states and rewards in deciding about its action. However,

for our purposes it will suffice to consider action-selection procedures, or policies, that select an
action deterministically in a time-invariant manner, solely on the basis of the last state:

Definition 2 (Deterministic, stationary Markov policy) A measurable mapping π : X → A
is called a deterministic Markov stationary policy, or just policy in short. Following a policy π in
an MDP means that at each time step t it holds that At = π(Xt).
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Given some policy π, the value of the policy in a state determines the expected return the
policy achieves from that state. The function V π mapping states to reals collects these values. If
(X1, A1, R1, X2, A2, R2, . . .) is the process generated from π with X1 ∼ P1 and the support of P1

includes x ∈ X ,

V π(x)
def
= E

[ ∞∑
t=1

γt−1Rt|X1 = x

]
.

Similarly, the action-value function of policy π given a state-action pair (x, a) ∈ X ×A determines
the expected return of the process whose first state is x, first action is a, and subsequent actions
are taken from π. These values can be collected into the action-value function underlying policy
π, which we shall denote by Qπ. If (X1, A1, R1, X2, A2, R2, . . .) is the process generated from π
with (X1, A1) ∼ P ′1 and the support of P ′1 includes (x, a) ∈ X ×A,

Qπ(x, a)
def
= E

[ ∞∑
t=1

γt−1Rt|X1 = x,A1 = a

]
.

It is easy to see that if the absolute value of the immediate expected reward r(x, a) =∫
r P (dr, dy|x, a) is uniformly bounded by Rmax, then the functions V π and Qπ are bounded

by Vmax = Qmax = Rmax/(1− γ), independent of the choice of π.
For a discounted MDP, we define the optimal value and the optimal action-value functions by

the respective equations

V ∗(x)
def
= sup

π
V π(x) , x ∈ X ,

Q∗(x, a)
def
= sup

π
Qπ(x, a) , x ∈ X , a ∈ A .

We say that a policy π is optimal if it achieves the optimal values in every state, i.e., if V π = V ∗.
We say that a policy π is greedy with respect to (w.r.t.) an action-value function Q and write

π = π̂(·;Q), if π(x) ∈ arg maxa∈AQ(x, a) holds for all x ∈ X (if there exist multiple maximizers,
some maximizer is chosen in an arbitrary deterministic manner). Greedy policies are important
because a greedy policy w.r.t. Q∗ is an optimal policy. Hence, knowing Q∗ is sufficient for behaving
optimally (cf. Proposition 4.3 of Bertsekas and Shreve 1978).1

For some measurable space S, let B(S) denote the space of bounded, measurable real function
with domain S. The so-called Bellman operators are B(X )→ B(X ) (resp., B(X×A)→ B(X×A))
mappings, defined as follows:

Definition 3 (Bellman Operators) Fix a policy π. The Bellman operators Tπ : B(X )→ B(X )
and Tπ : B(X ×A)→ B(X ×A) are defined as

(TπV )(x)
def
= r(x, π(x)) + γ

∫
R×X

V (y)P (dr, dy|x, π(x)) , x ∈ X ,

(TπQ)(x, a)
def
= r(x, a) + γ

∫
R×X

Q(y, π(y))P (dr, dy|x, a) , x ∈ X , a ∈ A .

To avoid unnecessary clutter we use the same symbol to denote both operators. However, this
should not introduce any ambiguity: Given some expression involving Tπ one can always determine
which operator Tπ is meant by looking at the type of function Tπ is applied to.

It is known that the fixed point of Tπ : B(X )→ B(X ) is the value function of π: TπV π = V π

and the fixed point of Tπ : B(X ×A)→ B(X ×A) is the action-value function of π: TπQπ = Qπ,
e.g., Proposition 4.2(b) of Bertsekas and Shreve (1978).

We will also need the so-called Bellman optimality operators:

1 Measurability issues are dealt with in Section 9.5 of the same book. In the case of finitely many actions,
no additional condition is needed besides the obvious measurability assumptions on the immediate reward
function and the transition kernel (Bertsekas and Shreve, 1978, Corollary 9.17.1), which we will assume
from now on.
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Definition 4 (Bellman Optimality Operators) The Bellman optimality operators T ∗ : B(X )→
B(X ), T ∗ : B(X ×A)→ B(X ×A) are defined by

(T ∗V )(x)
def
= max

a

{
r(x, a) + γ

∫
R×X

V (y)P (dr, dy|x, a)
}
, x ∈ X ,

(T ∗Q)(x, a)
def
= r(x, a) + γ

∫
R×X

max
a′

Q(y, a′)P (dr, dy|x, a) , x ∈ X , a ∈ A .

Again, we use the same symbol to denote both operators: the previous comment that no ambiguity
should arise because of this still applies. The Bellman optimality operators enjoy a fixed-point
property similar to that of the Bellman operators. In particular, T ∗V ∗ = V ∗ and T ∗Q∗ = Q∗,
see e.g., Proposition 4.2(a) of Bertsekas and Shreve (1978). The Bellman optimality operator thus
provides a vehicle to compute the optimal action-value function and therefore to compute an
optimal policy.

2.2 Offline Learning Problem and Empirical Bellman Operators

In the learning scenario, the Bellman (optimality) operators are not accessible. In the offline
learning scenario, all that is known about the MDP is in the form of a batch of data2

Dn = {(X1, A1, R1, X
′
1), . . . , (Xn, An, Rn, X

′
n)}.

Here (Ri, X
′
i) ∼ P (·, ·|Xi, Ai), Ai ∼ πb(·|Xi), and Xi ∼ νX (i = 1, . . . , n), where νX is some

fixed distribution over the states and πb is some stochastic, stationary Markov policy, the so-called
behavior policy.3 We shall denote by ν the common distribution underlying (Xi, Ai). Samples Xi

and Xi+1 may be sampled independently, or may be coupled through Xi+1 = X ′i. In the latter case
the data forms a single, long trajectory. In either of these two cases, we say that the data meets
the standard offline sampling assumption. The assumption that the states {Xi} are identically
distributed and that a fixed stationary policy is used to generate the data can be relaxed, but
would complicate the analysis and henceforth is not considered. Similarly, we do not consider other
cases such as when the data consists of independently sampled trajectories, though the analysis
would extend to such cases without much change.

The data Dn allows us to define the so-called empirical Bellman operators, which can be thought
of as empirical approximations to the true Bellman operators:

Definition 5 (Empirical Bellman Operators) Let Dn be a dataset as above. Define the ordered
multiset Sn = {(X1, A1), . . . , (Xn, An)}. For a given fixed policy π, the empirical Bellman operator
T̂π : RSn → Rn is defined as

(T̂πQ)(Xi, Ai)
def
= Ri + γQ(X ′i, π(X ′i)) , 1 ≤ i ≤ n .

Similarly, the empirical Bellman optimality operator T̂ ∗ : RSn → Rn is defined as

(T̂ ∗Q)(Xi, Ai)
def
= Ri + γmax

a′
Q(X ′i, a

′) , 1 ≤ i ≤ n .

2 In what follows, when {·} is used in connection to a dataset, we treat the set as an ordered multiset,
where the ordering is given by the time indices of the data points. In particular, given such an ordered
multiset Dn, we can both condition on Dn without losing information about the order of the elements of
Dn and write, e.g., f : Dn → Y , by which we mean a function specified by giving n values in Y , if the
dataset Dn was created from n points, one value for each datapoint.

3 Being a stochastic, stationary Markov policy πb determines a probability distribution over A given
any state x ∈ X .
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In words, the empirical Bellman operators get an n-element list Sn and return an n-dimensional
real-valued vector of the single-sample estimate of the Bellman operators applied to the value
function Q at the selected points.

The following proposition, which follows immediately from the definitions, shows that the em-
pirical Bellman operators provide an unbiased estimate to the respective Bellman operators (note
that T̂π and T̂ ∗ depend on the data, and hence they are random. The dependence is suppressed
to simplify the notation).

Proposition 1 For any fixed, bounded, measurable, deterministic function Q : X ×A → R, policy
π and index 1 ≤ i ≤ n, it holds that

E
[
T̂πQ(Xi, Ai)

∣∣Xi, Ai

]
= TπQ(Xi, Ai) ,

E
[
T̂ ∗Q(Xi, Ai)

∣∣Xi, Ai

]
= T ∗Q(Xi, Ai) ,

In what follows we shall use ‖Q‖ν to denote the L2(ν)-norm of a measurable function Q :
X ×A → R:

‖Q‖2ν
def
=

∫
X×A

|Q(x, a)|2dν(x, a) ,

whereas its empirical counterpart will be denoted by

‖Q‖2n
def
=

1

n

n∑
i=1

|Q(Xi, Ai)|2 .

Since by assumption, (Xi, Ai) ∼ ν, it follows that for any fixed Q, we have E
[
‖Q‖2n

]
= ‖Q‖2ν .

3 Problem Definition

Suppose that we are given a list of action-value functions Q1, Q2, . . . , QP (with the possibility of
P > n, or even P = ∞) and a dataset Dn, the latter satisfying the standard offline sampling
assumption. Our goal is to devise a procedure that selects the action-value function amongst
{Q1, . . . , QP } that has the smallest (integrated, squared) Bellman (optimality) error. Thus, the
ideal procedure would return Qk̂, where

k̂ = argmin
1≤k≤P

‖Qk − T ∗Qk‖2ν .

The idea of using the Bellman error as a criterion of optimization is not new. The algorithms
implementing generalized policy iteration can be viewed as working towards minimizing it, e.g.,
Lagoudakis and Parr (2003); Antos et al. (2008b). There are also some basis generation/adaptation
methods that use the Bellman error to guide their search, e.g., Menache et al. (2005); Keller et al.
(2006); Parr et al. (2007). For a justification of minimizing the Bellman error see the discussion in
the paper by Antos et al. (2008b) following their Theorem 4, or Lemma 7 of Antos et al. (2007).

Unfortunately, the Bellman error is not easy to work with. This is because neither T ∗ nor Tπ

is available in the learning setting. Moreover, even though T̂ ∗ (T̂π) provides an unbiased estimate
to T ∗ (respectively, Tπ) in the sense of Proposition 1, these operators cannot be used in a simple
manner to estimate the Bellman error. One might think that given any fixed function Q, the
mean-squared empirical Bellman residual, ‖Q − T̂ ∗Q‖2n, is a reasonable estimate to the Bellman
error. However, it follows from a standard bias-variance decomposition that

E
[
‖Q− T̂ ∗Q‖2n

]
= ‖Q− T ∗Q‖2ν + E

[
‖T̂ ∗Q− T ∗Q‖2n

]
6= ‖Q− T ∗Q‖2ν ,

which shows that ‖Q− T̂ ∗Q‖2n is a biased estimate. In fact, from the above decomposition, we see
that selecting the policies based on the mean-squared empirical Bellman residual leads to favoring
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Fig. 1 When the problem is to estimate the difference between T ∗Qk (solid green line) and Qk (bold,
solid blue line) and the function T ∗Qk is unknown, one may use samples from T̂ ∗Qk (red dots) and solve
a regression problem to get Q̃k (dashed red line). This estimate can be used in place of T ∗Qk to construct
an estimate of T ∗Qk −Qk.

policies whose underlying variance-like term E
[
‖T ∗Q− T̂ ∗Q‖2n

]
is small, as noted previously by,

e.g., Menache et al. (2005) or Antos et al. (2008b).
The main contribution of this work is a procedure, BErMin, and its analysis that shows that

BErMin finds a candidate whose Bellman error is not much larger than that of the best candidate.

Remark 1 In the analysis below, for the sake of simplicity, we assume that Q1, . . . , QP are fixed
deterministic functions. In practice, these functions would be estimated based on some data, in
which case, they would become random (data-dependent) functions. Our results, however, still
continue to hold provided that the sample Dn used to evaluate the candidates is independent of
Q1, . . . , QP . In particular, in this case the results can be stated and proven on the probability
space obtained by conditioning on the data that generated Q1, . . . , QP (the proofs would work
word-by-word with no further changes). The study of the case when the same data is used to
generate Q1, . . . , QP is left for future work. One possible starting point for such a study could be
the work by Antos et al. (2008b), who have analyzed the theoretical properties of approximate
policy iteration when the same data is used in all iterations, with the main message of their result
being that the correlations arising from reusing the same data are not necessarily catastrophic.

4 Model Selection Algorithm for Bellman Error Minimization (BErMin)

The purpose of this section is to introduce BErMin, a complexity regularization-based model
selection algorithm for the problem of finding the Bellman error minimizer among the action-value
function candidates {Qk}Pk=1. The setup is as described in Section 3. We start by describing the
main idea behind the algorithm in Section 4.1, while the algorithm itself is presented in Section 4.2.

4.1 The Idea Behind the Algorithm

The basic idea behind our approach is that while the Bellman operator T ∗ itself is not accessible,
one still may approximately learn T ∗Q and use it to estimate the Bellman error. Thanks to the
definition of the empirical Bellman operator T̂ ∗ (Definition 5), the regression function underlying

Dn,k =
{(

(X1, A1), (T̂ ∗Qk)(X1, A1)
)
, . . . ,

(
(Xn, An), (T̂ ∗Qk)(Xn, An)

)}
(1)

is T ∗Qk (cf. Proposition 1). Thus, we can feed Dn,k to a regression procedure which, ideally, returns
a “good” approximation to T ∗Qk. As the regression method one can use any of the large number
of state-of-the-art techniques (cf., the books by Hastie et al. 2001; Györfi et al. 2002; Wasserman
2007; Rasmussen and Williams 2006; Bishop 2006). Although the discussion of the relative merits
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Fig. 2 Consider the problem of estimating the Bellman error ‖Qk − T ∗Qk‖2ν . If T ∗Qk is replaced by

a surrogate Q̃
(1)
k , ‖Qk − Q̃(1)

k ‖
2
ν gives a relatively good estimate of this quantity because Q̃

(1)
k is close to

T ∗Qk. However, when Q̃
(2)
k replaces T ∗Qk, the resulting estimate of the Bellman error becomes poor and

‖Qk−Q̃(2)
k ‖

2
ν would be an underestimate of the true Bellman error. This might lead to the unjust selection

of the candidate Qk. One way to protect oneself against such mistakes is to take into account how well
the surrogate Q̃k approximates T ∗Q.

of the available methods is beyond the scope of this paper, we will shortly be more specific about
the desired properties of the method.

Let the action-value function returned by the chosen regression algorithm be denoted by Q̃k.
If Q̃k is close to T ∗Qk, then by calculating ‖Qk − Q̃k‖2n ≈ ‖Qk − Q̃k‖2ν ≈ ‖Qk − T ∗Qk‖2ν one can
select the action-value function with the smallest Bellman error based on computing

argmin
1≤k≤P

‖Qk − Q̃k‖2n.

Figure 1 depicts function Q̃k and its relation to Qk and T ∗Qk.
The problem with this procedure is that it might be overly optimistic and thus it may result in

an uncontrolled error. To see why, imagine that for some index k0 whose associated Bellman error
‖Qk0−T ∗Qk0‖2ν is “large”, the regression procedure returns an estimate such that ‖Qk0−Q̃k0‖2ν �
‖Qk0 − T ∗Qk0‖2ν (for example, because the regression procedure might be biased towards action-
values close to zero, Qk0 might be close to zero, while T ∗Qk0 might be far from zero, cf. also
Figure 2). As a result, the above procedure will likely select k0, and thus might miss some other
index with a lower Bellman error. To avoid this problem, we must guard the procedure against
the underestimation of the Bellman error.

BErMin achieves this by correcting ‖Qk − Q̃k‖2ν with ‖T ∗Qk − Q̃k‖2ν . Since

‖Qk − T ∗Qk‖2ν ≤ 2
[
‖Qk − Q̃k‖2ν + ‖T ∗Qk − Q̃k‖2ν

]
,

the correction indeed prevents the choice of an overly optimistic estimate (the sum in the brackets
cannot be less than half of the estimated quantity). The first term of the right-hand side can be
estimated by ‖Qk− Q̃k‖2n. We further assume that we are provided with a (tight) high-probability
upper bound, b̄k, on ‖T ∗Qk − Q̃k‖2ν , i.e., ‖T ∗Qk − Q̃k‖2ν ≤ b̄k with high probability. We propose
to select the action-value function corresponding to the minimum of ‖Qk − Q̃k‖2n + b̄k. If b̄k is a
sufficiently tight bound, we expect that using b̄k in place of ‖T ∗Qk − Q̃k‖2ν will not introduce any
significant further bias.

We want to take care of one more detail. We would like our procedure to handle situations
where the number of candidate action-value functions, P , is very large, or even potentially infinite.
The latter situation arises when one transforms the algorithm into an anytime method, whose
computation budget may or may not be limited, which keeps generating candidates if given more
time. As a consequence of this, we add another penalty term that prevents optimistic selection
bias and we will let P = ∞. If P is finite and small compared to n, this penalty term can safely
be ignored.
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Algorithm 1 BErMin({Qk}k=1,2,...,D(m,n),Regress(·), δ, a,B, τ)

1: Split D(m,n) into two disjoint parts: D(m,n) = D′m ∪ D′′n.

2: Choose (Ck) such that S =
∑
k≥1 exp(− (1−a)2an

16B2τ(1+a)
Ck) <∞.

3: Choose (δ′k) such that
∑
k≥1 δ

′
k = δ/2.

4: for k = 1, 2, . . . do
5: (Q̃k, b̄k)← Regress(D′m,k, δ′k)

6: ek ← 1
|D′′n |

∑
(X,A)∈D′′n

(Qk(X,A)− Q̃k(X,A))2

7: RRL
k ← 1

(1−a)2 ek + b̄k
8: end for
9: k̂ ← argmink≥1

[
RRL
k + Ck

]
10: return k̂

Lo
ss

Fig. 3 A graphical illustration of the BErMin algorithm. The error ‖Qk − Q̃k‖ν (blue, leftmost bar)

is estimated by
∥∥∥Qk − Q̃k∥∥∥2

n
(green, second bar from left), this is topped by b̄k, an upper bound on

‖Q̃k − T ∗Qk‖2ν . This is followed by inflating this result by a factor of 1
(1−a)2 (brown, third bar, dark

segment). Finally, the algorithm adds a complexity regularization term Ck (e.g., Ck = 32B2τ(1+a)

a(1−a)2n ln(k))

(red, third bar), and the minimum of all these values will be selected. In this figure, BErMin would select
the function Q2.

4.2 BErMin Algorithm

BErMin, shown as Algorithm 1, implements the ideas described in the previous section. A graph-
ical illustration of the procedure is given on Figure 3.

The algorithm’s inputs are the candidate action-value functions, the dataset D(m,n), a regres-
sion procedure Regress, a desired error probability δ, and three constants: 0 < a < 1, B, and
τ . Here a is a tuning parameter, the constant B is the bound on all functions involved (that is
Qk, Q̃k, T ∗Qk, and b̄k), and τ is the forgetting time of the Markov chain (cf. Definition 6 in
Appendix B). The effect of these values on the quality of the solution is quantified in Theorem 2.

The algorithm initializes its data structures in three steps. In the first line the dataset is split
into two disjoint parts, the first having m points, the second having n points. In Line 2, the values
of the constants (Ck) are chosen such that they satisfy a Kraft-McMillan-like inequality

∑
k≥1

exp

(
− (1− a)2an

16B2τ(1 + a)
Ck

)
<∞.

One feasible choice is Ck = 32B2τ(1+a)
(1−a)2an ln(k), but any other choice is possible as long as it satisfies

the required condition. The choice of these values should reflect one’s prior beliefs about the
suitability of the candidate functions. The default choice above (which increases with k) reflects
the prior belief that functions with higher indices are less suitable. Such a choice can be justified,
e.g., if Qk is expected to become more susceptible to overfitting as the value of k increases. When
one has a finite number of models (i.e., P <∞) and no good prior knowledge about the suitability
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of Qk, one can use Ck ≡ const. In Line 3, we choose the confidence parameters (δ′k) such that their
sum is δ/2. One possible choice is δ′k = 3

π2
δ
k2 (when P is finite, one can simply use δ′K = δk/P ).

For consistency, it might be a good idea to make δk and Ck behave “similarly” as a function k.
In Line 5 the regression procedure Regress is called with the dataset D′m,k derived from D′m

using (1) (i.e., D′m,k depends on Qk) and δ′k as the confidence parameter. The requirement on

Regress is that it returns Q̃k, an estimate of T ∗Qk, and b̄k, a high-probability upper bound
on the excess risk ‖Q̃k − T ∗Qk‖2ν . The upper bound on the excess risk is required to hold with
probability at least 1 − δ′k (cf. Assumption 1). One possible approach to estimate the excess risk
is proposed in Section D.

In Line 6, the dataset D′′n is used to empirically estimate ‖Qk − Q̃k‖2ν , i.e., the blue bars in
Figure 3 are estimated by the green bars. The error of this is expected to be well controlled (and
“small”). In the next line the two error estimates are combined to yield RRL

k (brown bars in
Figure 3). In Line 9 this estimate is further biased upwards (red portion of bars in the graph) by
the amount of Ck and then the minimizer of RRL

k +Ck is selected, where k = 1, 2, . . . , giving rise
to the value returned by the procedure.

Remark 2 (Computational Complexity) The complexity of BErMin is expected to be dominated
by the cost of running Regress. Let us assume that BErMin selects the candidate returned
amongst P candidates. If the computational complexity of Regress is O(r(m)), the computational
complexity of BErMin becomes O((n + r(m))P ). Thus, knowing the amount of time available,
one could come up with an estimate of how many models can be evaluated. However, we think that
a better approach is to run the algorithm in an anytime fashion until the computational budget is
exhausted. Although BErMin is not expected to be cheap, overall it might still be cheaper than
an ad-hoc tuning method with a human in the loop, though admittedly, this would be hard to
measure in practice.

Remark 3 (Candidate Models: An Example) An important question is what candidate functions
one should feed to BErMin and how these are found. In general, this will depend on what a priori
information one has about the unknown MDP. Even though this is not the focus of this work,
we give an example when we assume a priori that the optimal action-value function belongs to a
Sobolev space, but the identity of the Sobolev space to which the function belongs is unknown.

First, let us define what we mean by Sobolev spaces. Assume that X = Rd and let k ≥
⌈
d
2

⌉
.

An order k Sobolev space over the domain X × A = Rd × A consists of all real-valued functions
whose domain is X × A and whose squared Sobolev norm, ‖f‖2Wk(Rd×A) =

∑
a∈A ‖f(·, a)‖2Wk(Rd),

is finite. Here, ‖f(·, a)‖2Wk(Rd) is the sum of the squared L2(X )-norms of the mixed (weak) at most

k-order partial derivatives of f . Let us denote by Wk(Rd ×A) the set of these functions.4

For a pair (k, J) ∈ N× R+, define

F(k, J) = { f ∈Wk(Rd ×A) : ‖f‖Wk(Rd×A) ≤ J } .

Note that ∪k∈N,J∈R+
F(k, J) is a huge space. For regression problems, it is known that the minimax

optimal rate of estimating functions belonging to F(k, J) is O(J2d/(2k+d)m−2k/(2k+d)) (Györfi
et al., 2002). Here, m is the number of samples used in the learning procedure and although we
use the same letter to denote the number of samples as in D′m, this should be considered as a
coincidence.

Assume now that the true action-value function belongs to F(k∗, J∗) for some unknown
(k∗, J∗) ∈ N× R+. Define the set of candidate function spaces as (F(k, J))(k,J)∈Pm

, where

Pm =
{

(k, J) ∈ N× N :
⌈
d
2

⌉
≤ k ≤ m, J ∈ {20, 21 . . . , 2dlog2me}

}
.

This set defines a grid on both the smoothness order k and the size of the smoothness term J . As
we see shortly, the resolution of this grid is set such that F(k∗, J∗) is contained within a member
of (F(k, J))(k,J)∈Pm

that is not much larger than F(k∗, J∗) itself.

4 A more precise notation would be Wk,2(Rd ×A) because of the use of the L2-norm in the definition
of the Sobolev norms.



Model Selection in Reinforcement Learning 11

Suppose that we have a learning algorithm A that can be configured to seek the estimate of
the action-value function in F(k, J) and has the convergence rate of O(J2d/(2k+d)m−2k/(2k+d)),
provided that the true optimal action-value function indeed belongs to F(k, J) (for some results
in this direction see, e.g., Farahmand et al. 2009b,a). Construct Q(k,J) = A(Dm,F(k, J)) for
all (k, J) ∈ Pm. Note that for m large enough there is a pair (k′, J ′) in Pm, close to (k∗, J∗),
such that F(k∗, J∗) is contained within F(k′, J ′). In particular if m ≥ max{k∗, J∗}, then there
exists (k′, J ′) ∈ Pm such that k′ = k∗, J ′ ≤ 2J∗, and F(k∗, J∗) ⊂ F(k′, J ′). The convergence
rate of the estimator based on (k′, J ′)[= (k∗, J ′)] is O(J ′2d/(2k

∗+d)m−2k
∗/(2k∗+d)), which is to be

compared with the optimal rate, O(J∗2d/(2k
∗+d)m−2k

∗/(2k∗+d)). We see that asymptotically, the
rate associated with the model (k′, J ′) is within at most a factor of 2 of the optimal rate. Thus,
even when the set of models is restricted to a set with less than m(log2(m) + 1) elements, by
selecting an appropriate model amongst them, one can match the asymptotic rate of the true
model, up to a constant factor. Thus, if we can prove that the model selected by BErMin is
almost as good as (k′, J ′) in terms of its Bellman error, we get that BErMin also comes within
a constant factor of the Bellman error of the best model. This is the subject of Theorem 2, which
will be stated in the next section.

5 Theoretical Analysis

The goal of this section is to provide a theoretical justification for the BErMin procedure. We
start with a rather abstract complexity regularization-based model selection algorithm and its
analysis in Section 5.1. The main result proven there (Theorem 1), which goes beyond the setting
of reinforcement learning, will be the basis of our main result, Theorem 2, which is presented
in Section 5.2. Theorem 2 shows that BErMin has an oracle-like behavior, in the sense that
with high probability it selects the model with the minimum Bellman error up to a multiplicative
constant and some additional terms that converge to zero. Finally, in Section 5.3, we introduce the
concept of adaptivity and prove that the oracle-like behavior of BErMin leads to its adaptivity
(Theorem 3).

5.1 A Generic Model-Selection Theorem

The theorem presented in this section concerns a generic complexity regularization-based model
selection procedure. The theorem and its proof technique are similar to Theorem 3 of Bartlett
et al. (2002). The main difference to this previous work is that our result is stated for an abstract
setting where we are concerned with selecting the minimum amongst a set of values measured
in noise, whereas Bartlett et al. (2002) developed their result in a specific supervised learning
setting. Further, we make the role of non-central tail inequalities needed for the risk estimators
explicit. Finally, we prove another related result, which will be useful for our later developments.
Nevertheless, the main proof technique is essentially the same as used in the proof of Theorem 3
of Bartlett et al. (2002). For further similar results on complexity regularization, see Barron (1991);
Lugosi and Wegkamp (2004).

Theorem 1 (Key Technical Model Selection Theorem) Consider two sequences of random
variables, Lk,Rk, k = 1, 2, . . . . Assume that there exist positive constants c1, c2, c3, c4 and 0 < a <
1, such that for any 0 < δ ≤ 1 and k = 1, 2, . . . , the random variables Lk, Rk satisfy

P
(

(1− a)Rk ≥ Lk −
1

c2
ln
c1
δ

)
≥ 1− δ , (2)

P
(

1

1 + a
Rk ≤ E [Rk] +

1

c4
ln
c3
δ

)
≥ 1− δ . (3)
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Let Ck (k = 1, 2, . . . ) be a deterministic sequence that satisfies

c5
def
=
∑
k≥1

exp (−c2(1− a)Ck) <∞ , (4)

c6
def
=
∑
k≥1

exp

(
−c4

1 + 2a

1 + a
Ck

)
<∞, (5)

and define k̂ by

k̂ ← argmin
k≥1

[Rk + Ck] .

Then, the following hold true:
(A) For any 0 < δ < 1, with probability at least 1− δ, it holds that

Lk̂ < (1− a2) min
k≥1
{E [Rk] + 2Ck}+

ln( 2c1c5
δ )

c2
+

(1− a2) ln( 2c3c6
δ )

c4
.

(B) For any α > 0,

Lk̂ ≤ (1− a2) min
k≥1
{E [Rk] + 2Ck}+ α

holds with probability at least 1−
{
c1c5 exp

(
− c2α2

)
+ c3c6 exp

(
− c4α

2(1−a2)

)}
.

In a typical application of this theorem, Lk would be the loss associated to some candidate k
(from a set of at most countable candidates) and the random variable Rk would be a tightly
concentrated, inflated estimate of Lk so that (1− a)Rk is still an overestimate of Lk, as required
by condition (2). The theorem then yields that the loss associated with the selected candidate is
not much larger than constant times the minimum of the losses biased by the “small’ quantities
Ck. In the appendix we show that conditions (2)-(3) are always satisfied for a slightly inflated
estimate of Lk that tightly concentrates around its mean.

Proof Fix 0 < δ1, δ2 ≤ 1. We start by bounding the deviation∆ = Lk̂−(1−a2) mink {E [Rk] + 2Ck}.
By adding and subtracting (1−a) mink(Rk +Ck), we can decompose ∆ into two terms as follows:

∆ =

(
Lk̂ − (1− a) min

k
(Rk + Ck)

)
︸ ︷︷ ︸

∆1

+(1− a)

(
min
k

(Rk + Ck)− (1 + a) min
k

(E [Rk] + 2Ck)

)
︸ ︷︷ ︸

∆2

.

To bound the first term of this sum, we use that mink(Rk + Ck) = Rk̂ + Ck̂, which holds thanks

to the definition k̂. Thus, we have

∆1 = Lk̂ − (1− a)(Rk̂ + Ck̂) ≤ max
k
{Lk − (1− a)(Rk + Ck)} .

Choose any 0 < δ′k ≤ 1 such that
∑
k δ
′
k = δ1. By condition (2), with probability 1 − δ1, the

quantity on the right-hand side of the last inequality is upper bounded by

max
k

{
1

c2
ln
c1
δ′k
− (1− a)Ck

}
.

In particular, if we choose δ′k = δ1/c5 exp(−c2(1− a)Ck), the argument of the maximum becomes
1
c2

ln c1
δ′k
− (1− a)Ck = 1

c2
ln c1c5

δ1
and thus we get that

∆1 ≤
1

c2
ln
c1c5
δ1

holds with probability 1− δ1.
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Now, using minθ f(θ)−minθ g(θ) ≤ maxθ(f(θ)− g(θ)), ∆2 can be bounded by

∆2 ≤ (1 + a) max
k

(
Rk

1 + a
− E [Rk]− 1 + 2a

1 + a
Ck

)
.

By condition (3), for any 0 < δ′′k ≤ 1 such that
∑
k δ
′′
k = δ2, it holds with probability 1− δ2 that

the quantity on the right-hand side of the above inequality is upper bounded by

(1 + a) max
k

(
1

c4
ln
c3
δ′′k
− 1 + 2a

1 + a
Ck

)
.

Choosing δ′′k = δ2/c6 exp(−c4 1+2a
1+a Ck), we get that 1

c4
ln c3

δ′′k
− 1+2a

1+a Ck = 1
c4

ln c3c6
δ2

, therefore, with

probability 1− δ2,

∆2 ≤
1 + a

c4
ln
c3c6
δ2

.

Combining the inequalities obtained for ∆1 and ∆2, we get that with probability 1− (δ1 + δ2),

∆ ≤ 1

c2
ln
c1c5
δ1

+
1− a2

c4
ln
c3c6
δ2

. (6)

To show Part (A), fix 0 < δ ≤ 1. Using the definition of ∆ and (6), by choosing δ1 = δ2 = δ/2
we get Part (A). To prove Part (B), fix some α > 0. Choosing δ1 = c1c5 exp(−c2α/2), δ2 =
c3c6 exp(−c4α/(2(1 − a2))), from (6) we get that with probability 1 − (δ1 + δ2) the inequality
∆ ≤ α holds, thus finishing the proof.

5.2 Model Selection for Reinforcement Learning and Planning

In this section we state and prove our main result which shows that BErMin has an oracle-like
behavior. We prove the result under the following assumption.

Assumption 1 Assume that the following hold:

1. The standard offline sampling assumption is satisfied by the data set

D′′n = {(X1, A1, R1, X
′
1), . . . , (Xn, An, Rn, X

′
n)}

and the time-homogeneous Markov chain X1, X2, . . . , Xn uniformly quickly forgets its past with
a forgetting time τ (cf. Definition 6 in Appendix B).

2. The functions Qk, Q̃k, T ∗Qk (k ≥ 1) are bounded by a deterministic quantity B > 0.
3. The functions Qk (k ≥ 1) are deterministic.
4. For each k and for any 0 < δ′k < 1, (Q̃k, b̄k) = Regress(D′m,k, δ′k) are σ(D′m)-measurable,

b̄k ∈ [0, 4B2] and ‖Q̃k − T ∗Qk‖2ν ≤ b̄k holds with probability at least 1− δ′k.
5. For (Xi, Ai, Ri, X

′
i) ∈ D′′n, the distribution of (Xi, Ai) given D′m is ν: P ((Xi, Ai) ∈ U |D′m) =

ν(U) for any measurable set U ⊂ X ×A.

A couple of remarks on these assumptions are in order.

Remark 4 The standard offline sampling assumption was discussed in Section 2.2. The additional
assumption here demands that the Markov chain should “forget its past” uniformly fast. The actual
definition, which we think is often satisfied, is somewhat technical and is given in the appendix.
Here we note that this condition is satisfied if the Markov chain is uniformly ergodic (or, in other
words, if the so-called Doeblin condition holds for the Markov chain (Meyn and Tweedie, 2009)).
Note that if the chain mixes but the “mixing rate” is slow, a result similar to the one presented
below would still hold, but possibly with a worse rate. On another note, although we have not
made any specific distributional assumptions about D′m, it is expected that D′m should satisfy
similar assumptions to D′′n to make b̄k small.
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Remark 5 If the immediate rewards are bounded with probability one, most algorithms would
return deterministically bounded value functions. If this is not known to hold for some algorithm,
but a bound rmax on the immediate reward function is known, then boundedness can be achieved
by truncating the value functions Qk and Q̃k so that they take values in the interval [−B,B] =
[−rmax/(1−γ), rmax/(1−γ)] (i.e., instead of Qk(x, a), use min(max(Qk(x, a),−B), B)). Since the
target of learning in both cases is a function with range contained in [−B,B], truncating the
action-values this way introduces no loss of quality.

Remark 6 That the functions (Qk) are deterministic is not an essential requirement, as already
noted in Remark 1.

Remark 7 In Line 5 of Algorithm 1, we call (Q̃k, b̄k) ← Regress(D′m,k, δ′k). The condition that∑
k≥1 δ

′
k = δ/2 ensures that simultaneously, for all k ≥ 1, ‖Q̃k − T ∗Qk‖2ν ≤ b̄k(δ′k) holds with

probability at least 1− δ/2.

Remark 8 One approach to get the required high probability estimates bk is described in Section D.

Remark 9 The success of BErMin will depend critically on the quality of the regression procedure,
Regress, that it calls. If the value-function estimation procedure A used to calculate the candidate
action-value functions is available, one appealing idea is to reuse this procedure for the purpose
of computing the functions (Q̃k). This can be done when A also accepts the value of the discount
factor as input γ. In this case, one could feed A with γ = 0 and the data

D′m,k =
{(

X,A, (T̂ ∗Qk)(X,A), X ′
)

: (X,A,R,X ′) ∈ D′m
}

to produce Q̃k, where we have replaced the immediate rewards in the data with the estimates of
T ∗Qk.5 This works because with γ = 0 the problem of finding the optimal value function becomes
equivalent to estimating the immediate reward function based on the available sample. When
producing the estimate Q̃k it would make sense to use the same tuning of A as the one used to
produce Qk. This will be further explored in Section 5.3. Nevertheless, one is not limited to this
choice and, in fact, it makes perfect sense to use an adaptive regression procedure. This can be
done based on Theorem 1 or in many other ways (for some recent works on adaptive regression
estimation, refer to e.g., Wegkamp 2003; van der Vaart et al. 2006 or Arlot and Celisse 2009).

We are ready to present the main result of this work:

Theorem 2 (Model Selection for RL/Planning) Let Assumption 1 hold. Consider the BErMin
algorithm defined in Section 4 used with some 0 < a < 1, 0 < δ ≤ 1, and (Ck)k≥1 such that

S
def
=
∑
k≥1

exp

(
− (1− a)2an

16B2τ (1 + a)
Ck

)
<∞ (7)

holds. Let k̂ be the index selected by BErMin. Then, with probability at least 1− δ,

‖Qk̂ − T
∗Qk̂‖

2
ν ≤

4(1 + a) min
k≥1

{
2

(1− a)2
‖Qk − T ∗Qk‖2ν +

3

(1− a)2
b̄k + 2Ck

}
+

96B2τ (1 + a)

(1− a)2an
ln

(
4S

δ

)
.

Note that Ck = 32B2τ(1+a)
(1−a)2an ln(k) satisfies S <∞ (in particular, with this choice we get S = π2/6).

A detailed discussion of the result is given after its proof.

5 Note that here and in what follows we use the notation T̂ ∗ liberally to be interpreted based on the
local context as the empirical Bellman operator underlying the dataset whose samples T̂ ∗ interacts with
in the given expression. Thus, in the above case, (T̂ ∗Q)(X,A) is meant to be computed based on D′m.
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Proof By the triangle inequality and (|x|+ |y|)2 ≤ 2(x2 + y2), we get

‖Qk̂ − T
∗Qk̂‖

2
ν ≤ 2

(
‖Qk̂ − Q̃k̂‖

2
ν + ‖Q̃k̂ − T

∗Qk̂‖
2
ν

)
.

Define Lk = ‖Q̃k −Qk‖2ν + (1− a)bk. The first term on the right-hand side of the last inequality
can be upper bounded by Lk̂, while, outside of an error event E1 of probability mass at most δ/2,

the second term can be upper bounded by bk̂. Using the definition of Lk, we can further upper
bound this term by Lk̂/(1− a), thus obtaining that on Ec1

‖Qk̂ − T
∗Qk̂‖

2
ν ≤

2(2− a)

1− a
Lk̂ ≤

4

1− a
Lk̂ .

Thus, the problem is reduced to that of bounding Lk̂. For this, we will use Theorem 1. Let

‖Q̃k −Qk‖2n =
1

n

∑
(x,a,r,x′)∈D′′n

(Q̃k(x, a)−Qk(x, a))2.

Note that by our assumptions and conventions for multisets, this sum has n terms. Define

Rk =
1

(1− a)2
‖Q̃k −Qk‖2n + bk .

With these definitions, the index k̂ returned by BErMin can be given as

k̂ = argmin
k≥1

[Rk + Ck] .

Thus, provided that (Rk), (Lk) satisfy (2)–(3) and (Ck) satisfies (4)–(5), we will be able to conclude
from Theorem 1 a bound on Lk̂ and thus also on the Bellman error of the selected action-value

function. Since Q̃k, bk are themselves a function of D′m, we will use Theorem 1 on the probability
space Ωm = (Ω,Σ,Pm) with Pm(·) = P(·|D′m), i.e., we will apply the theorem on the probability
space obtained by conditioning on D′m. Since a bound on a conditional probability gives a bound
on the unconditioned probability, this will be sufficient to conclude a high probability bound on
Lk̂.

Let us consider (2). This condition requires that for some c1, c2 > 0, for any 0 < δ′ ≤ 1,
Pm(Lk − (1− a)Rk ≤ 1

c2
ln c1

δ′ ) ≥ 1− δ′. By the definition of Lk and Rk,

Lk − (1− a)Rk = ‖Q̃k −Qk‖2ν + (1− a)bk −
(

1

1− a
‖Q̃k −Qk‖2n + (1− a)bk

)
= ‖Q̃k −Qk‖2ν −

1

1− a
‖Q̃k −Qk‖2n .

Our plan is to use Lemma 2 of Appendix C to provide the required bound. For this notice that

E
[
‖Q̃k −Qk‖2n|D′m

]
= ‖Q̃k − Qk‖2ν and that ‖Q̃k − Qk‖2n can be written as an average of the

values taken by the function f : X ×A → R, (x, a) 7→ (Q̃k(x, a)−Qk(x, a))2 over a Markov chain
taking values in X ×A. By Assumption 1.1, the forgetting time of the underlying X -valued chain
is bounded by τ . It follows from the definition of forgetting times and that the actions are sampled
from a fixed behavior policy that the forgetting time of the X ×A-valued chain is also bounded by
τ . Further, by Assumption 1.2, the range of f is in [0, 4B2]. Thus, by the first part of Lemma 2,

Pm(‖Q̃k − Qk‖2ν − 1
1−a‖Q̃k − Qk‖

2
n ≤

8B2(1+a)τ
(1−a)an ln 1

δ′ ) ≥ 1 − δ′. Thus, condition (2) holds with

c1 = 1 and c2 = (1−a)an
8B2(1+a)τ .

Now, let us consider (3). This condition requires that for some c3, c4 > 0, for each 0 < δ′ ≤ 1,
Pm( 1

1+aRk−E [Rk|D′m] ≤ 1
c4

ln c3
δ′ ) ≥ 1−δ′. Again,Rk is an average of the function f : X×A → R,

(x, a) 7→ 1
(1−a)2 (Q̃k(x, a) − Qk(x, a))2 + bk over an X × A-valued Markov chain with forgetting



16 Amir-massoud Farahmand, Csaba Szepesvári

time bounded by τ . The range of function f is contained in [0, 4B2(1 + 1
(1−a)2 )]. Therefore, the

second part of Lemma 2 gives that the required inequality holds with c3 = 1, c4 = (1−a)2an
8B2(1+(1−a)2)τ .

It remains to check (4) and (5). A simple calculation gives that condition (7) ensures that both
c5 =

∑
k≥1 exp(−c2(1 − a)Ck) and c6 =

∑
k≥1 exp(−c4 1+2a

1+a Ck) are finite and upper bounded by
S. Therefore, by Part (A) of Theorem 1,

Lk̂ ≤ (1− a2) min
k≥1

[
1

(1− a)2
‖Q̃k −Qk‖2ν + b̄k + 2Ck

]
+∆1 , (8)

holds outside of an error event E2 of probability mass at most δ/2, where

∆1 =
ln( 2c5

δ/2 )

c2
+

(1− a2) ln( 2c6
δ/2 )

c4
≤ 8B2τ(1 + a)(2 + (1− a)2)

(1− a)an
ln

(
4S

δ

)
.

It remains to upper bound ‖Q̃k−Qk‖2ν . For this note that on Ec1 the inequalities ‖Q̃k−T ∗Qk‖2ν ≤
bk hold simultaneously for all k ≥ 1. Hence, on this event, ‖Q̃k −Qk‖2ν ≤ 2(‖Qk − T ∗Qk‖2ν + bk).
Thus, on (E1 ∪ E2)c,

‖Qk̂ − T
∗Qk̂‖

2
ν ≤ 4(1 + a) min

k≥1

[
2

(1− a)2
‖Qk − T ∗Qk‖2ν +

2 + (1− a)2

(1− a)2
b̄k + 2Ck

]
+

4∆1

1− a

Bounding 2 + (1− a)2 by 3 gives the final result.

To gain a better understanding of the bound of Theorem 2, we discuss the contribution of each
of its right-hand side terms.

The term ‖Qk − T ∗Qk‖2ν is the true Bellman error of each candidate action-value function Qk,
and is a measure of the approximation error. This is the main quantity of interest and the ultimate
goal of the minimization, which is not accessible to us. An oracle, having access to T ∗Qk, would
select k̂ = argmink≥1 ‖Qk − T ∗Qk‖2ν .

By definition, the term b̄k is a bound on how well Q̃k approximates T ∗Qk. We need two
conditions to hold true to make this term small: The regression procedure Regress should return
a good estimate of T ∗Qk, while the bound returned on the excess risk by the same procedure
should also be a tight bound on the excess-risk of the returned regressor. In Section D of the
Appendix we show how these goals can be achieved by building on Theorem 1 in a quite general
situation. To make the whole procedure competitive with an oracle, one should ensure that b̄k is
comparable to the size of Bellman-error ‖Qk − T ∗Qk‖2ν . How to achieve this is further discussed
in Section 5.3.

The third term of the bound is the complexity regularizer Ck and shows the price we pay to have
an algorithm that works with a very large (or even infinite) number of models. As discussed earlier,
the choice of Ck should reflect our prior belief about the suitability of the candidates. Note that
if one has a finite number of models, then one can use Ck = 0. In the general case, Ck will depend
on k, but it is still expected to be small compared to the other terms. The complexity regularizer
has an information theoretic interpretation, which is discussed by Barron (1991); Barron et al.
(2008).

The term outside the minimizer comes from the randomness of the sample D′′n used to estimate
one component of the Bellman error. This term, just like Ck, converges to zero at a parametric
rate, and it is thus expected to be small compared to the other terms. Note the tradeoff between
the terms (Ck) and this last term.

Another tradeoff exists between the first two and the last two terms. This tradeoff is governed
by a: as a approaches zero, the constant in front of the first two terms become smaller, but the
last two terms diverge to infinity (see the specific form of Ck after the statement of the theorem).
Moreover, as a approaches 1, the multipliers of all these terms blow up. As the first two terms
often go to zero slower than the last one as the number of samples grows, one expects that a value
of a close to zero will give the best tradeoff and in fact letting a go to zero like a ∼ n−

1
2 might

be the best choice. However, when the first two terms are fast (i.e., they converge to zero at the
O(1/n) rate) then one should keep a bounded away from zero to get the best asymptotic rate.
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Remark 10 The result also holds true for policy evaluation, when given some policy π, the goal is
to select a function Qk that minimizes the Bellman error ‖TπQk −Qk‖ν . In order to use BErMin

for this problem, in the definition of the dataset, T̂π should be used in place of T̂ ∗. In fact, the
only property of T̂ ∗ that we used in the proof was the property stated in Proposition 1, which
holds for both T ∗ and Tπ.

Remark 11 If the forgetting time τ or an upper bound thereof is not known, one may use τ̂(n) =
τ0 f(n) in the BErMin procedure for some τ0 > 0, and a positive-valued function f that diverges.
Then, as soon as τ̂ > τ , the conclusion of Theorem 2 will hold with τ in the bound replaced by
τ̂ . In order to get the asymptotically best rate, one should choose a function f that grows slowly
and a small value of τ0. For example, when f(n) = ln(n), the asymptotic bound is increased only
by a logarithmic factor. However, a slowly growing f with a small τ0 can lead to a poor transient
performance. On the other hand, if f grows faster (e.g., f(n) = nr for some 0 < r < 1) or when
τ0 is larger, the transient performance is expected to improve at the price of a worse asymptotic
performance.

5.3 Adaptivity

The purpose of this section is to show that BErMin can be made an adaptive procedure in a
well-defined sense. We start with explaining what we mean by adaptivity.

5.3.1 The concept of adaptivity We consider the special case when the algorithm A used to
compute Qk, in addition to a dataset, takes as input a function space F(pk), the discount factor
0 < γ < 1 and the confidence parameter 0 < δ ≤ 1. The idea is that when A is run with this input,
it will output an action-value function belonging to F(pk). For a given k, F(pk) may or may not
hold the optimal action-value function. As a result, F(pk) will impact the quality of Qk returned
by A in two ways: First, if F(pk) is large, the limiting Bellman error of Qk (as the number of
samples converges to infinity) is expected to be smaller. Let us denote this quantity by ak(T ∗)
(the parameters signifying that the limiting error depends on k and on the MDP through T ∗).
The second effect is that if F(pk) is large, the algorithm A will be more susceptible to overfitting.
Overall, we expect that for any k, T ∗, 0 < δ ≤ 1, n ≥ 1, a high-probability bound of the form

‖Qk − T ∗Qk‖2ν ≤ ak(T ∗) + cT∗ bk(n, ln(1/δ)), (9)

which holds with probability at least 1 − 2
π2 δ, will hold for A.6 Here, the second term bounds

the error that results from using a finite number of samples. In this term, cT∗ is a constant that
depends on T ∗ only (i.e., on the MDP), but is independent of F(pk), n and δ. On the other

hand, bk does not depend on T ∗. If in the limit of an infinite sample, ‖Qk − T ∗Qk‖2ν converges to

infQ∈F(pk) ‖Q− T ∗Q‖ν , then ak(T ∗) = infQ∈F(pk) ‖Q− T ∗Q‖
2
ν . Thus, in this case ak(T ∗) becomes

equal to the (squared) approximation error underlying F(pk) and the second term is said to bound
the estimation error. Typically, bk is a polynomial of the ratio of its arguments and scales with
how “large” F(pk) is and it is expected that bk →∞ as k →∞. It is assumed that (9) is a tight
bound of this form (at this stage, the particular form of the above bound is unimportant). Note
that being a tight bound, in general one cannot compute this bound as this would require a priori
knowledge of quantities which, in general, are a priori unknown. For example, ak(T ∗) is typically
unknown. Thus, only an oracle could evaluate these bounds.

By (9), it follows that the inequalities

‖Qk − T ∗Qk‖2ν ≤ ak(T ∗) + cT∗ bk(n, ln(k2/δ)) (10)

6 The purpose of constant 2
π2 is to simplify subsequent developments, but is otherwise unimportant due

to the logarithmic dependence of bk on 1/δ.
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hold simultaneously for all k ≥ 1, with probability at least 1− δ/3. Thus, an oracle, having access

to the bounds on the right-hand side could select the index k∗ such that ‖Qk∗ − T ∗Qk∗‖2ν = βn,
where

βn
def
= min

k≥1

{
ak(T ∗) + cT∗ bk(n, ln(k2/δ))

}
.

We call a procedure adaptive if it only uses data set Dn but still matches the error of the candidate
k∗ up to a constant factor. Formally, if k̂ is the index selected by a procedure then we call the
procedure adaptive, if for some C, c ≥ 1 it holds that for each MDP of interest7, n ≥ 1, 0 < δ < 1/c,
we have ∥∥Qk̂ − T ∗Qk̂∥∥2ν ≤ C min

k≥1

{
ak(T ∗) + cT∗bk(n, ln(k2/δ))

}
,

with probability 1− c δ.

5.3.2 The adaptivity of BErMin In this section we assume that m = n, i.e., the initial data has
an even length which is split into two equal halves. The purpose of this section is to show that
BErMin can be used as the basis of an adaptive procedure. For this, we propose to use A as
the regression procedure Regress used in BErMin. To make our proposal formal, assume that
A takes four parameters: the function space, the dataset, the discount factor, and the confidence
parameter, and it returns both an action-value estimate and a confidence bound. We propose that
BErMin should use

(Q̃k, b̄k,n(δ)) = A
(
F(pk),D′n,k, 0, 2

π2
δ
k2

)
with

D′n,k = D′n(Qk) =
{(
X1, A1, (T̂

∗Qk)(X1, A1), X ′1

)
, . . . ,

(
Xn, An, (T̂

∗Qk)(Xn, An), X ′n

)}
.

Since γ = 0, algorithm A acts as a regression procedure that works in the function space F(pk)
(and will in fact disregard the next states X ′1, . . . , X

′
n).

We make the following assumption on b̄k,n returned by A:

Assumption 2 (Tightness of b̄k,n) There exists some C ≥ 1 such that for each MDP of inter-
est, sample-size n, model index k, action-value function Q bounded by B and confidence parameter
0 < δ < 1, when A is fed with F(pk), D′n(Q), γ = 0, and δ then b̄k,n(δ) returned by A satisfies

b̄k,n(δ) ≤ C
[

inf
Q′∈F(p)

‖Q′ − T ∗Q‖2ν + bk
(
n, ln( 2

π2δ )
)]

(11)

with probability at least 1− δ.8

Note that we make no assumption on how A behaves when its input is different from the above. In
particular, we make no assumption about whether b̄k,n(δ) will be tight when A is fed with γ > 0.
A crucial point about the above assumption is that it uses the same bk functions which are used
in the definition of adaptivity.

Since b̄k,n(δ) is an upper bound on the error of the action-value function returned by A, the
above assumption implies two things about A when used as a regression procedure. First, in the
limit of infinite samples the function returned should become close (up to a positive constant) to
the theoretically best approximation error. In fact, many regression algorithms (such as the ones
mentioned earlier) satisfy this condition (and can in fact achieve the approximation error). Second,
the term bounding estimation error underlying A when used as a regression procedure, apart from
a constant factor, should be the same as the corresponding term when A is used to approximate
the fixed point of some non-constant operator. This is again reasonable, since regression in general
is expected to be easier than fixed point estimation.

Now, we are ready to state the main result of this section:

7 The class of MDPs can be restricted. Then the procedure is called adaptive within the chosen class.
8 As before, the constant π2/2 is included only to simplify some further results.
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Theorem 3 Let Assumptions 1 and 2 hold and assume that m = n. In addition, assume that (i)
for each k ≥ 1, (9) holds with probability at least 1− δ where cT∗ ≥ C∗ for some positive constant
C∗ that is independent of T ∗; and (ii) for any index k ≥ 1, L > 0, we have bk(n,L) = Ω(L/n).

Then, when BErMin is used with Regress = A with γ = 0 and Ck = 32B2τ(1+a)
(1−a)2an ln(k), the

resulting procedure is adaptive: there exists a positive constant C ′′ such that for each MDP, n ≥ 1,
and 0 < δ < 1, the Bellman-error of the action-value function selected by BErMin is bounded by

∥∥Qk̂ − T ∗Qk̂∥∥2ν ≤ C ′′βn = C ′′min
k≥1

[
ak(T ∗) + cT∗ bk

(
n, ln(k

2

δ )
)]
,

with probability at least 1− 5
3δ.

Proof From Theorem 2, with the choice of Ck = 32B2τ(1+a)
(1−a)2an ln(k), we have that with probability

at least 1− δ,

∥∥Qk̂ − T ∗Qk̂∥∥2ν ≤ min
k≥1

[
c1 ‖Qk − T ∗Qk‖2ν + c2 b̄k,n

(
2
π2

δ
k2

)
+ c3

ln(k)

n

]
+ c4

ln(1/δ)

n

holds for some constants c1, c2, c3, c4 > 0 which do not depend on the MDP, δ and n. From
Assumption 2, we get that the inequalities

b̄k,n
(

2
π2

δ
k2

)
≤ C

[
inf

Q′∈F(p)
‖Q′ − T ∗Qk‖

2
ν + bk(n, ln(k2/δ))

]
≤ C

[
‖Qk − T ∗Qk‖2ν + bk(n, ln(k2/δ))

]
(12)

hold simultaneously for all k ≥ 1 with probability at least 1− δ/3. Thus, for some c′1, c
′
2 > 0,

∥∥Qk̂ − T ∗Qk̂∥∥2ν ≤ min
k≥1

[
c′1 ‖Qk − T ∗Qk‖

2
ν + c′2 bk

(
n, ln(k

2

δ )
)

+ c3
ln(k)

n

]
+ c4

ln(1/δ)

n

holds with probability at least 1 − 4
3δ. Now, by (ii), ln(k)

n = O
(
bk

(
n, ln k2

δ

))
and ln(1/δ)

n =

O
(
bk

(
n, ln k2

δ

))
. Hence, with some C ′ > 0, on the event where the previous inequality holds,

∥∥Qk̂ − T ∗Qk̂∥∥2ν ≤ C ′min
k≥1

[
‖Qk − T ∗Qk‖2ν + bk

(
n, ln k2

δ

) ]
holds, too. By (9), the inequalities

‖Qk − T ∗Qk‖2ν ≤ ak(T ∗) + cT∗ bk(n, ln(k2/δ))

hold simultaneously for all k ≥ 1 with probability 1 − δ/3. Hence, with probability 1 − 5
3δ, with

some C ′′ > 0,

∥∥Qk̂ − T ∗Qk̂∥∥2ν ≤ C ′′min
k≥1

[
ak(T ∗) + cT∗ bk

(
n, ln(k

2

δ )
)]

= C ′′βn ,

where we used that, by assumption, cT∗ is bounded away from zero.
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6 Conclusion

In this work we suggested a principled approach for the tuning of reinforcement learning algorithms
in the offline and non-interactive scenario. The problem was formulated as that of finding an
action-value function with a small Bellman error among a set of candidate functions. BErMin, a
complexity regularization-based algorithm, was introduced for this purpose.

Our main theoretical result, Theorem 2, is a finite-sample high-probability upper bound that
shows that the Bellman error of the action-value function selected by BErMin is almost as small
as that of an oracle who has access to the true Bellman errors. This result was further elaborated
in Section 5.3, where we have shown that BErMin can be made adaptive in the sense that it can
compete with an oracle who selects the model with the smallest error bounds (Theorem 3). As far
as we know, this is the first work that considers adaptivity in a reinforcement learning scenario.
The main message of our results is that just like in supervised learning, it is possible to learn
almost as fast as if one had extra a priori information.

In this paper we focused on the goal of finding an action-value function with a small Bellman
error. However, the primary goal in reinforcement learning is to find good policies. Is it possible to
derive results similar to ours for this alternative problem? In what follows we consider two possible
approaches.

First, still sticking to the action-value based approach, one might be tempted to consider the
projected Bellman error, instead of the Bellman error. To recap, for some function space F |A|, the
projected Bellman error of Q ∈ F |A| is defined as ‖Q−ΠF |A|T ∗Q‖, where ΠF |A| is the projection
operator that maps its argument to the closest point on F |A| w.r.t. an appropriate norm. The
projected Bellman error is typically defined for linear function spaces F |A|, therefore we also
restrict our discussion to such spaces. The advantage of the projected Bellman error then is that
its magnitude can be readily estimated based on a sample (see, e.g., Antos et al. 2008b; Szepesvári
2010). However promising this is, unfortunately, the projected Bellman error is unsuitable for model
selection purposes as it eliminates the component of the error that is orthogonal to F |A|. Thus,
even if one could calculate the exact values of the projected Bellman error, this knowledge would
be useless for model selection purposes. This limitation of the projected Bellman error is also
apparent if we note that under the so-called on-policy sampling condition and when F |A| is a
nontrivial space, the projected Bellman error is always zero, independently of the choice of F |A|.
Therefore, the projected Bellman-error alone contains no information about the suitability of F |A|.

Let us consider the next alternative, which we might call model-(or simulation-)based policy
selection. Assume as before that the problem is already reduced to that of selecting the best policy
from a list of policy candidates π1, . . . , πP . Let the performance be measured as the expected total
discounted reward with respect to some known initial distribution ρ. For an MDP M and policy
π, let this measure be V π(M,ρ).

One way to avoid using value functions is to use part of the data to build an approximate
model M̂ = (X ,A, P̂ , γ) of the MDP of interest. Assume that for any learned model P̂ , one can
efficiently generate virtual trajectories for the initial distribution ρ and any policy of interest π.
For 1 ≤ i ≤ P , let V πi(M̂, ρ) be the average of the returns obtained by following policy πi in M̂ .
If P̂ is close enough to P , in an appropriate norm, and enough virtual trajectories are used, the
estimates of V πi(M̂, ρ) will be close to V πi(M,ρ) and thus it makes sense to select the policy with
the maximum estimated expected return. The quality of this procedure will ultimately depend
on how well M̂ approximates M (since generating virtual trajectories is cheap), i.e., the problem
of designing an effective policy selection method is reduced to that of learning a good generative
model. Model learning based on sampled transitions falls into the realm of supervised learning.
Hence, having an adaptive procedure for policy-selection will hinge upon if we have an adaptive
model-learning procedure. Even though this idea looks more straightforward than the idea studied
in this paper, it has a major weakness: it suggests learning an accurate model of the environment
regardless of whether the fine-detail of the model is relevant for evaluating the performance of a
policy or not. In a “large” environment many details of the environment might be hard to learn,
but some of these details might be unnecessary to know about when it comes to searching for a
good policy.
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Future Work

Although in this paper we made some progress toward reinforcement learning algorithms that
require minimum human supervision, the problem is far from being solved. In particular, the
following questions require further investigation:

A) How to generate the list of candidate action-value functions (Q1, Q2, . . .)? In what order should
we run the methods available? We briefly discussed this issue in Remark 3 in an abstract
setting. However, a more thorough, systematic approach would be desired and much remains
to be done in this respect.

B) How can one construct data-dependent estimates of the forgetting time parameter τ? Both
Meir (2000) and Modha and Masry (1998) face a similar situation; their respective procedures
require the knowledge of the β-mixing coefficients of the dependent stochastic process. As far
as we know, there is yet no rigorous procedure to estimate such parameters in the general
case. Nevertheless, McDonald (2010) has recently proposed to use a mutual information-based
estimator to upper bound the β-mixing coefficients, but the sample-efficiency of the method
is yet to be shown. Meanwhile, one may use the procedure described in Remark 11 at the cost
of a marginally slower than 1/n extra loss.

C) What is the relation between the quality of the solution of the fixed point of the Bellman
optimality operator and the performance of the corresponding greedy policy? Antos et al.
(2008b) and Antos et al. (2007) made some initial steps towards answering this question.
However, their methods are rather crude and it seems possible to improve the bounds derived
in these works.

D) We derived some data-dependent bounds on the excess-risk of a regression procedure that
operates in a large function space which suited our immediate needs. However, the bound is
asymptotic in nature and is potentially suboptimal. Can this bound be improved?

E) Finally, we briefly touched upon alternatives to value-function estimation methods. We have
identified a model-based approach as one possible alternative. The model-based approach,
however, should be tailored so that the irrelevant aspects of the world are not paid attention
to while learning the model. How to do this remains another very intriguing open problem.

Appendices

In the following appendices, we provide some auxiliary technical results that are omitted from
the main body of the text. We start with a noncentral tail inequality (Appendix A, Lemma 1),
followed by a Bernstein-like concentration inequality for Hidden Markov Processes (Appendix B,
Theorem 4). We put these two results together to obtain a noncentral tail inequality for the
considered class of dependent sequences (Appendix C, Lemma 2). Finally in Appendix D, we
consider the problem of deriving high-probability excess-risk bounds in a regression setting.

A Noncentral Tail Inequalities

The following result shows that if a random variable X satisfies a Bernstein-like inequality, the
probability distribution of X being ε-smaller than (1− a)E [X] or ε-larger than (1 + a)E [X] (for
0 < a < 1) decays with the rate exp(−c ε) for some c independent of ε. This should be contrasted
with the slower exp(−c′ ε2) concentration rate of X around its expectation E [X] (for ε “small”).

Lemma 1 (Noncentral Tail Inequality) Let X be a random variable whose expected value is
nonnegative. Assume that for some V > 0 and for all ε > 0, X satisfies the following Bernstein-like
tail inequality

P (E [X]−X ≥ ε) ≤ exp

(
− V ε2

E [X] + ε

)
. (13)
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Then, for any 0 < a < 1, ε > 0,

P
(
E [X]− 1

1− a
X ≥ ε

)
≤ exp

(
−V (1− a)aε

(1 + a)

)
.

Similarly, if for some V > 0 and for all ε > 0 it holds that

P (X − E [X] ≥ ε) ≤ exp

(
− V ε2

E [X] + ε

)
(14)

then for all 0 < a < 1 and ε > 0, it also holds that

P
(

1

1 + a
X − E [X] ≥ ε

)
≤ exp (−V aε) .

Proof We have

P
(
E [X]− (1− a)−1X ≥ ε

)
= P (E [X]−X ≥ ε(1− a) + aE [X])

≤ exp

(
− V ((1− a)ε+ aE [X])

2

(1 + a)E [X] + (1− a)ε

)

≤ exp

(
− V ((1− a)ε+ aE [X])

2

((1− a)ε+ aE [X]) ( 1+a
a )

)

= exp

(
−V a ((1− a)ε+ aE [X])

1 + a

)
≤ exp

(
−V (1− a)aε

1 + a

)
,

where we used (13) to get the first inequality, added a positive value to upper bound the denomi-
nator in the second inequality, and used the fact that E [X] ≥ 0 to derive the last inequality.

Similarly, (14) leads to

P
(
(1 + a)−1X − E [X] > ε

)
= P (X − E [X] > ε(1 + a) + aE [X])

≤ exp

(
− V ((1 + a)ε+ aE [X])

2

(1 + a)E [X] + (1 + a)ε

)

≤ exp

(
− V ((1 + a)ε+ aE [X])

2

((1 + a)ε+ aE [X]) ( 1+a
a )

)

= exp

(
−V a ((1 + a)ε+ aE [X])

1 + a

)
≤ exp (−V aε) .

B Concentration Inequality for Hidden Markov Processes (HMPs)

The classical Bernstein inequality for independent and identically distributed sequences (e.g.,
Györfi et al. (2002, Appendix A)) can be shown to hold for the sequences of dependent random
variables under various conditions. Such extensions are very useful when studying reinforcement
learning algorithms when the standard assumption is that the data comes from some Markov
chain. In this section we give such an extension based on Samson (2000).

Let X1, . . . , Xn be a time-homogeneous Markov chain with transition kernel P (·|·) taking
values in some measurable space X . We shall consider the concentration of the average of the
Hidden-Markov Process

(X1, f(X1)), . . . , (Xn, f(Xn)),
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where f : X → [0, B] is a fixed measurable function. To arrive at such an inequality, we need a
characterization of how fast (Xi) forgets its past.

For i > 0, let P i(·|x) be the i-step transition probability kernel: P i(A|x) = P (Xi+1 ∈ A |X1 = x)
(for all A ⊂ X measurable). Define the upper-triangular matrix Γn = (γij) ∈ Rn×n as follows:

γ2ij = sup
(x,y)∈X 2

∥∥P j−i(·|x)− P j−i(·|y)
∥∥
TV

. (15)

for 1 ≤ i < j ≤ n and let γii = 1 (1 ≤ i ≤ n).
Matrix Γn, and its operator norm ‖Γn‖ w.r.t. the 2-norm, are measures of dependence for the

random sequence X1, X2, . . . , Xn. For example if the Xis are independent, Γn = I and ‖Γn‖ = 1. In
general ‖Γn‖, which appears in the forthcoming concentration inequalities for dependent sequences,

can grow with n. Since the concentration bounds are homogeneous in n/ ‖Γn‖2, a larger value

‖Γn‖2 means a smaller “effective” sample size. This motivates the following definition.

Definition 6 We say that a time-homogeneous Markov chain uniformly quickly forgets its past
if τ = supn≥1 ‖Γn‖

2
< +∞. Further, τ is called the forgetting time of the chain.

Conditions under which a Markov chain uniformly quickly forgets its past are of major interest.
The following proposition, extracted from the discussion on pages 421–422 of the paper by Samson
(2000), gives such a condition.

Proposition 2 Let µ be some nonnegative measure on X with nonzero mass µ0. Let P i be the
i-step transition kernel as defined above. Assume that there exists some integer r such that for all
x ∈ X and all measurable sets A,

P r(A|x) ≤ µ(A). (16)

Then,

‖Γn‖ ≤
√

2

1− ρ 1
2r

,

where ρ = 1− µ0.

Meyn and Tweedie (2009) calls homogeneous Markov chains that satisfy the majorization condi-
tion (16) uniformly ergodic. We note in passing that there are other cases when supn≥1 ‖Γn‖ is
finite. Most notable, this holds when the Markov chain is contracting. The matrix Γn can also
be defined for more general dependent processes and such that the theorem below remains valid.
With such a definition, ‖Γn‖ can be shown to be bounded for general Φ-dependent processes.

The following result is a trivial corollary of Theorem 2 of Samson (2000) (Theorem 2 is stated
for empirical processes and can be considered as a generalization of Talagrand’s inequality to
dependent random variables):

Theorem 4 Let f be a measurable function on X whose values lie in [0, B], X1, . . . , Xn be a
homogeneous Markov chain taking values in X and let Γn be the matrix with elements defined
by (15). Let

Z =
1

n

n∑
i=1

f(Xi).

Then, for every ε ≥ 0,

P (Z − E [Z] ≥ ε) ≤ exp

(
− ε2 n

2B ‖Γn‖2 (E [Z] + ε)

)
,

P (E [Z]− Z ≥ ε) ≤ exp

(
− ε2 n

2B ‖Γn‖2 E [Z]

)
.
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C Noncentral Tail Inequality for HMPs

By putting together the results of the last two sections we obtain the following noncentrail tail
inequality for HMPs.

Lemma 2 Let X1, X2, . . . , Xn be a time-homogenous Markov chain taking values in some mea-
surable space X , and f be a measurable function with 0 ≤ f ≤ B. Let Z = 1

n

∑n
i=1 f(Xi). Let Γn

be the matrix with elements defined by (15). Then, for any 0 < a < 1,

P
(
E [Z]− 1

1− a
Z ≥ ε

)
≤ exp

(
− (1− a)anε

2B ‖Γn‖2 (1 + a)

)
,

P
(

1

1 + a
Z − E [Z] ≥ ε

)
≤ exp

(
− anε

2B ‖Γn‖2

)
.

Proof According to Theorem 4,

P (Z − E [Z] ≥ ε) ≤ exp

(
− ε2n

2B ‖Γn‖2 (E [Z] + ε)

)

and

P (E [Z]− Z ≥ ε) ≤ exp

(
− ε2n

2B ‖Γn‖2 E [Z]

)

≤ exp

(
− ε2n

2B ‖Γn‖2 (E [Z] + ε)

)
.

These inequalities have the same form as the Bernstein-like inequality in Lemma 1 with the choice
of V = n

2B‖Γn‖2
, and therefore imply the result.

D Excess-Risk Estimation

Assumption 1 requires that BErMin has access to a function b̄ such that the excess risk ‖Q̃k −
T ∗Qk‖2ν is below b̄(δ) with probability at least 1−δ. In this section, we provide a general approach
to come up with such a function. To avoid clutter, the notation of this section is not specialized
to the reinforcement learning setup. The conversion, however, is straightforward: the function f∗

here is the same as T ∗Qk (k = 1, . . . , P ) and the estimate f̂ is the same as Q̃k that is returned
by the Regress module in Algorithm 1. The random variables Xi ∈ X should be “read as”
(Xi, Ai) ∈ X ×A and Yi = T̂ ∗Qk(Xi, Ai).

The task of estimating the excess risk is difficult because what can directly be estimated based
on the sample is the loss, and the expected loss of a predictor is larger than the excess risk by the
loss of the best regressor, which is an unknown quantity. In this section we attack this problem
under the assumption that the best regressor belongs to a known function space F . We target the
problem of simultaneously estimating a regressor and returning a high-probability risk bound for
the excess risk of the computed regressor. If F was a “small” function space (e.g., it had a finite
pseudo-dimension) then any procedure (such as empirical risk minimization) with known bounds
on its estimation error would directly give a solution: The estimation error bound would provide a
bound on the excess risk. To increase generality, here we consider the case when F is too large for
such a simple approach to succeed, but F can be decomposed into an infinite sequence of “small”
function spaces, Fk: F = ∪kFk. Under this assumption the natural approach is to perform model
selection and return the estimation error of the selected model. The reason this can be successful
is because model selection will ultimately select a sufficiently complex model. We develop this idea
in the rest of this section.
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Algorithm 2 Regress({Dn,D′n}, {F1,F2, . . . }, an, τ, (Ck))

1: // Let {(X ′t, Y ′t )} be the input-output pairs in D′n: D′n = {(X ′1, Y ′1 ), . . . , (X ′n, Y
′
n)}.

2: for k = 1, 2, . . . do
3: f̂k ← A(Dn,Fk).
4: R̄k = 1

(1−an)2
1
n

∑n
i=1(f̂k(X ′i)− Y ′i )2.

5: end for
6: k̂ ← argmink≥1

[
R̄k + Ck

]
.

7: Choose β1, β2, . . . such that βk ≥ 0 and
∑
k≥1 βk = 2/3.

8: return f̂k̂ and Bk̂(n, ·βk̂, τ)

D.1 The Excess-Risk Estimation Algorithm

Let (X1, Y1), . . . , (Xn, Yn) be a stationary, time-homogeneous Markov chain taking values in X ×
[−B,B] for X ⊂ Rd and let the regression function f∗ be defined by f∗(x) = E [Yi|Xi = x]. Let
τ be an upper bound on the forgetting time of (Xi, Yi) (cf. Appendix B). Denote the stationary
distribution underlying (Xi) by ν. Given Dn = {(X1, Y1), . . . , (Xn, Yn)}, the goal is to provide a

good estimate f̂ of f∗ and a high confidence upper bound on the excess-risk

‖f̂ − f∗‖2 def
= ‖f̂ − f∗‖22,ν .

We assume that we are given a sequence of nested function spaces (Fk) and f∗ is known to
belong to their union ∪k≥1Fk. We further assume that we are given an algorithm A, which, given

Fk, δ, and a dataset of n points, returns an estimate f̂k of f∗ that belongs to Fk. We further
assume that for any k ≥ 1 there exist functions Ak and Bk such that for any 0 < δ ≤ 1,

Lk
def
= ‖f̂k − f∗‖2 ≤ Ak(f∗) + Bk(n, δ, τ) (17)

holds with probability 1 − δ and that the value Bk(n, δ, τ), which possibly depends on the data,
can be computed at any arguments (n, δ, τ) and hence is available to our algorithm. No similar
assumption is made about function Ak.

The algorithm that we propose works with the data split in half: The first half, Dn, is used
to find the candidates f̂k (by calling A), while the second half is used to run the model-selection
algorithm to approximately select the candidate with the smallest excess risk. Finally, the algo-
rithm returns the function Bk(n, ·βk, τ) for the selected value of k as the high-probability bound
on the excess-risk returns. Here, βk ≥ 0,

∑
k≥1 βk = 2/3 determines the prior distribution of the

error probability δ. The algorithm is given as Algorithm 2. For simplicity, we assume that the full
dataset, Dn ∪ D′n holds 2n data points.

Bounds of the type (17) are of major interest in the theory of regression estimation. The first
term, which depends only on k and f∗ and is independent of n and δ corresponds to the so-called
approximation error and shows how well one can approximate f∗ with elements of Fk. The second
term is a bound on the error resulting from using a finite sample, i.e., it bounds the estimation
error. When the sample is made of a sequence of independent, identically distributed random
variables, there are many results in the literature that can provide bounds of the type (17), e.g.,
Györfi et al. 2002; van de Geer 2000; Lugosi and Wegkamp 2004; Bartlett et al. 2005. The case of
dependent sample is much less explored. However, since at the heart of most result are exponential
tail inequalities and most exponential tail inequalities available for the independent case have been
extended to the dependent case, one expects that with some work existing bounds can be readily
extended to the dependent case (see Farahmand and Szepesvári (2011) for some recent results
along this direction and a discussion of some prior work).

D.2 Theoretical Analysis of the Excess Error Estimator

The purpose of this section is to prove that under some technical conditions the regression estimate
returned by Algorithm 2 satisfies an oracle-like property and the returned bound is a proper high-
probability bound on the excess risk of the resulting estimator. The first part of the statement
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follows easily from Theorem 1 and Lemma 2. The proof of this part is included mainly for the
sake of completeness. The main novelty is the second part. The main idea underlying the proof of
the second part is that for n large enough, with high probability k̂ will be such that Ak̂(f∗) = 0
and thus, by inequality (17), Bk̂(n, δβk̂, τ) will bound the excess risk Lk̂.
The assumptions under which we prove our result are as follows:

Assumption 3 Assumptions on the data:
1. Dn = {(X1, Y1), . . . , (Xn, Yn)}, D′n = {(X ′1, Y ′1), . . . , (X ′n, Y

′
n)}, Xi, X

′
i ∈ X , |Yi|, |Y ′i | ≤ B

for some B > 0.
2. Dn and D′n are independent.
3. (X ′i, Y

′
i ) is a time-homogenous, stationary Markov chain and its forgetting time is upper

bounded by τ . We denote by ν the stationary distribution underlying (X ′i) and we let ‖·‖ =
‖·‖ν .

Assumptions on (Fk) and the regressor function f∗:
1. The function spaces F1,F2, . . . hold measurable, real-valued functions with domain X bounded

by B > 0.
2. The function f∗(x) = E [Y ′t |X ′t = x] belongs to ∪k≥1Fk.

Assumptions on algorithm A and functions Ak, Bk:
1. For any n ≥ 1, k ≥ 1, A returns a σ(Dn)-measurable function f̂k that belongs to Fk and

the error bound (17) holds for this function with probability 1− δ.
2. The functions Ak are such that for some C > 1, Ak(f∗) ≤ C inff∈Fk

‖f − f∗‖2 holds for
all k ≥ 1 and Ak(·) ≥ Ak+1(·) holds for any k ≥ 1.

3. The function Bk(n, δ, τ)
n→∞−−−−→ 0 is a decreasing function of n and an increasing function

of τ .

Note that we did not need to assume that the function spaces are nested, because in the proof all
we need is that the functions (Ak) satisfy Ak+1 ≤ Ak. If Ak(f∗) = C inff∈Fk

‖f − f∗‖2, then the
nestedness of (Fk) implies that (Ak) is a pointwise decreasing sequence of functions.

The following theorem is the main result of this section.

Theorem 5 Assume that the conditions listed in Assumption 3 hold and the value of an given
to the algorithm depends on n and in particular an = cn−1/2 with some c > 0. Assume that the
penalty factors, Ck = Ck(n), passed to Algorithm 2 are such that for any fixed k, Ck(n) is a strictly
decreasing function of n and for any fixed n,

Sn =
∑
k≥1

exp

(
− (1− an)2ann

8B2(1 + an)τ
Ck(n)

)
<∞. (18)

Let f̂ and b̂ be the pair returned by Algorithm 2. Then, the following hold:
(A) For any 0 < δ ≤ 1,

∥∥∥f̂ − f∗∥∥∥2 ≤(1− a2n) min
k≥1


∥∥∥f̂k − f∗∥∥∥2
(1− an)2

+ 2Ck(n)

+
2an

1− an
L(f∗) +

16B2(1 + an)τ ln( 2Sn

δ )

(1− an)ann

holds with probability at least 1− δ, where L(f) = E
[
(f(X ′1)− Y ′1)2

]
.

(B) Fix 0 < δ ≤ 1. Then, there exists n0 = n0(f∗, δ) ≥ 1 such that for any n ≥ n0, the inequality∥∥∥f̂ − f∗∥∥∥2 ≤ b̂(δ) holds with probability at least 1− δ.

Note that by selecting an ∝ n−1/2, Part (A) shows that the procedure’s excess error above the
oracle’s performance is O(n−1/2).

Proof Let k̂ be the index selected by Algorithm 2. A standard calculation shows that E
[
R̄k|Dn

]
=

1
(1−an)2L(f̂k), where for any fixed function f , L(f) = E

[
(f(X ′1)− Y ′1)2

]
denotes the squared

prediction loss of f . Our goal is to apply Theorem 1 to derive a bound on L(fk̂) and then relate
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L(fk̂) to the excess risk Lk̂. We verify the conditions of Theorem 1. As before, the theorem is
applied to the probability space obtained by conditioning w.r.t. Dn. Let us first verify conditions
(2)-(3) of Theorem 1, which connect L(f̂k) and Rk. In order to verify these conditions, we use

Lemma 2. Let g : X × R → R be defined by x 7→ (f̂k(x) − y)2. By assumption, the range of
g is a subset of [0, 4B2]. Hence, applying Lemma 2 to Z = 1/n

∑n
i=1 g(X ′i, Y

′
i ), exploiting that

(1 − an)2R̄k = Z, after some algebra we get that for all ε > 0, the following inequalities are
satisfied:

P
(
L(f̂k)− (1− an)R̄k > ε

∣∣∣Dn) ≤ exp

(
− (1− an)an

8B2τ(1 + an)
ε

)
,

P
(

1

1 + an
R̄k − E

[
R̄k|Dn

]
> ε
∣∣∣Dn) ≤ exp

(
− (1− an)2ann

8B2τ
ε

)
.

Choosing c1, c3 = 1, c2 = (1−an)ann
8B2τ(1+an)

, and c4 = (1−an)2ann
8B2τ , we see that conditions (2) and (3) of

Theorem 1 are satisfied. Further, let c5 (c6) of Theorem 1 be defined as in (4) (respectively, as in
(5)). Then, if (Ck(n)) is chosen such that (18) is satisfied, we also have c6 ≤ c5 = Sn < +∞, as
required. Therefore, Part (B) of Theorem 1 with the choice of α = α(n, an, δ), where

α(n, an, δ) =
16B2(1 + an)τ ln( 2Sn

δ )

(1− an)ann

implies that with probability 1− δ,

L(f̂k̂) ≤ (1− a2n) min
k≥1

[
1

(1− an)2
L(f̂k) + 2Ck(n)

]
+ α(n, an, δ) .

Subtract L(f∗) from both sides and use that Lk = L(f̂k)− L(f∗) to get

Lk̂ ≤ (1− a2n) min
k≥1

[
1

(1− an)2
Lk + 2Ck(n)

]
+

2an
1− an

L(f∗) + α(n, an, δ) .

This finishes the proof of Part (A).
Let us now prove Part (B). Fix some 0 < δ ≤ 1. Let E1 be the error event where

∥∥∥f̂k̂ − f∗∥∥∥2 ≤ (1− a2n) min
k≥1


∥∥∥f̂k − f∗∥∥∥2
(1− an)2

+ 2Ck(n)

+
2an

1− an
L(f∗) + α(n, an, δ/3) (19)

fails to hold. By Part (A), P (E1) ≤ δ/3. Let E2 be the error event where one of the inequalities∥∥∥f̂k − f∗∥∥∥2 ≤ Ak(f∗) + Bk(n, βkδ, τ), k = 1, 2, . . . (20)

fails to hold. By assumption and the choice of (βk), P (E2) ≤ 2δ/3. Our goal is to show that
for n large enough, outside of E = E1 ∪ E2, Ak̂(f∗) = 0. Indeed, if this holds then outside of E ,∥∥∥f̂k̂ − f∗∥∥∥2 ≤ Ak̂(f∗) + Bk̂(n, βk̂δ, τ) = Bk̂(n, βk̂δ, τ), which implies the desired statement.

In the rest of the proof, all of our derivations will be done on the event Ec. Let k∗ be the first
index where Ak(f∗) = 0. Note that k∗ is well-defined by our assumption that relates Ak(f∗) to

the approximation errors, inff∈Fk
‖f − f∗‖2, and because f∗ ∈ ∪k≥1Fk. If k∗ = 1, then k̂ ≥ k∗

and thus Ak̂(f∗) = 0 holds, too. Therefore, from now on assume that k∗ > 1. From (19), it follows
that

∥∥∥f̂k̂ − f∗∥∥∥2 ≤ (1− a2n)


∥∥∥f̂k∗ − f∗∥∥∥2

(1− an)2
+ 2Ck∗(n)

+
2an

1− an
L(f∗) + α(n, an, δ/3) .
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By (20), we also have ‖f̂k∗ − f∗‖2 ≤ Ak∗(f
∗) + Bk∗(n, βk∗δ, τ) = Bk∗(n, βk∗δ, τ). Chaining these

inequalities gives∥∥∥f̂k̂ − f∗∥∥∥2 ≤ (1− a2n)

[
Bk∗(n, βk∗δ, τ)

(1− an)2
+ 2Ck∗(n)

]
+

2an
1− an

L(f∗) + α(n, an,
δ
3 ). (21)

Let n0 be the first integer such that the right-hand side of (21) is strictly below 0 < Ak∗−1(f∗)/C.
Such an index exists because the right-hand side of (21) converges to zero as n → ∞. Since

f̂k̂ ∈ Fk̂, we have inff∈Fk̂
‖f − f∗‖2 ≤ ‖f̂k̂ − f∗‖2. Therefore, if n ≥ n0, k̂ = k̂n is such that

Ak̂(f∗) ≤ C inff∈Fk̂
‖f − f∗‖2 ≤ C‖f̂k̂ − f∗‖2 < Ak∗−1(f∗) and thus, by the definition of k∗,

Ak̂(f∗) = 0, thus finishing the proof.
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