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1 Introduction

Most reinforcement learning algorithms rely on the use of some function approximation method.
In general, their performance will be largely influenced by what function approximation method
is used and how it is configured. Current practice is that the user of the algorithm decides about
both the method and its configuration, such as the number and nature of basis functions for a linear
function approximation method, and tune them in an ad hoc manner. Although good rules of thumb
may exist of how to tune a particular method, or which method to use in a particular situation, there
is no guarantee that a rule of thumb will give good results on the problem that the user wants to
solve. A superior approach, however, is to choose and configure the method based on the data. We
show that strong theoretical results can be proven if an appropriate selection procedure is used.1

In this paper we assume that we are given a representative dataset Dn of sampled transitions from a
Markovian Decision Process (MDP), the goal being to find a good policy of the MDP [2]. Instead
of directly working with policies, we consider the problem of finding an action-value function with
a small (integrated, squared) Bellman error, which is supposed to facilitate the search for a good
policy: When the Bellman error of an action-value function is zero (or very small) an optimal
(respectively, good) policy can be obtained from the action-value function with minimal effort.

Suppose that we are given a list of action-value functions Q1, Q2, . . . , QP (with the possibility of
P > n, or even P =∞) and a dataset2

Dn = {(X1, A1, R1, X
′
1), . . . , (Xn, An, Rn, X

′
n)}.

Here (Ri, X
′
i) ∼ P (·, ·|Xi, Ai), Ai ∼ πb(·|Xi), and Xi ∼ νX (i = 1, . . . , n), where νX is some

fixed distribution over the states and πb is some stochastic, stationary Markov policy, the so-called
behavior policy. We shall denote by ν the common distribution underlying (Xi, Ai). We say that
this dataset meets the standard offline sampling assumption.

Our goal is to devise a procedure that selects the action-value function amongst {Q1, . . . , QP } that
has the smallest (integrated, squared) Bellman (optimality) error. Thus, the ideal procedure would
return Qk̂, with k̂ = argmin1≤k≤P ‖Qk − T ∗Qk‖2ν .

It is tempting to use a conventional supervised learning model selection approach, such as complex-
ity regularization [3, 4], to devise a model selection procedure for reinforcement learning problems.
A straightforward adoption of complexity regularization to our problem suggests the following pro-
cedure: First, assume that data Dn is independent of the candidates Q1, Q2, . . .. Further, assume
that data-based estimates BEn(Qk) of the respective Bellman errors (i.e., ‖Qk − T ∗Qk‖ν) of the
candidates are available. Then choose

k̂ = argmin
k≥1

[
C1 BEn(Qk) + C2

pen(k)

n

]
,

∗Also affiliated with the Department of Computing Science, University of Alberta, Canada.
1This extended abstract is a brief summary of the accepted paper by Farahmand and Szepesvári [1].
2For the definition of standard symbols used in the RL literature, refer to the full version of the paper [1].
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where C1 ≥ 1 and C2 > 0 are appropriate constants and pen(k) is a suitable complexity penalty,
such as pen(k) = ln(k).

Unfortunately, the Bellman error is not easy to work with. This is because the Bellman opti-
mality operator T ∗ is not available in the learning setting. Moreover, even though R(Xi, Ai) +
γmaxa′∈AQ(X ′i, a

′) is an unbiased estimate of T ∗Q(Xi, Ai) (for 1 ≤ i ≤ n), this operator cannot
be used in a simple manner to estimate the Bellman error. This would be clear if one notice that for
any fixed bounded measurable function Q,

E

[
1

n

n∑
i=1

∣∣∣∣Q(Xi, Ai)− [Ri + γ max
a′∈A

Q(X ′i, a
′)]

∣∣∣∣2
]

=

‖Q− T ∗Q‖2ν + E

[
1

n

n∑
i=1

∣∣∣∣T ∗Q(Xi, Ai)− [Ri + γ max
a′∈A

Q(X ′i, a
′)]

∣∣∣∣2
]
6= ‖Q− T ∗Q‖2ν ,

which shows that 1
n

∑n
i=1 |Q(Xi, Ai)− [Ri + γmaxa′∈AQ(X ′i, a

′)]|2 is a biased estimate of the
Bellman error. The bias is a function of Q itself, which makes it quite different from the variance of
the noise in the standard regression setting, which is independent of the regression function.

The main contribution of this work is a procedure called BERMIN that has an oracle-like property
in the sense that it selects the model with the minimum Bellman error up to a multiplicative constant
and some additional terms that converge to zero.

2 Model Selection Algorithm for Bellman Error Minimization (BERMIN)

The basic idea behind our approach is that while the Bellman operator T ∗ itself is not accessible,
one still may approximately learn the function T ∗Q and use it to estimate the Bellman error. Since
for any fixed, bounded, measurable, deterministic function Q and index 1 ≤ i ≤ n, it holds that
E
[
Ri + γmaxa′∈AQ(X ′i, a

′)
∣∣Xi, Ai

]
= T ∗Q(Xi, Ai), the regression function underlying

Dn,k =

{(
(X1, A1), R1 + γ max

a′∈A
Qk(X ′1, a

′)

)
, . . . ,

(
(Xn, An), Rn + γ max

a′∈A
Qk(X ′n, a

′)

)}
is T ∗Qk Thus, we can feed Dn,k to a regression procedure which, ideally, returns a “good” approx-
imation to T ∗Qk. As the regression method one can use any of the large number of state-of-the-art
techniques (cf., Hastie et al. [5]).

Let the action-value function returned by the chosen regression algorithm be denoted by Q̃k. If
Q̃k is close to T ∗Qk, then by calculating ‖Qk − Q̃k‖2n , 1

n

∑n
i=1 |Qk(Xi, Ai)− Q̃k(Xi, Ai)|2 ≈

‖Qk − Q̃k‖2ν ≈ ‖Qk −T ∗Qk‖2ν , one can select the action-value function with the smallest Bellman
error based on computing argmin1≤k≤P ‖Qk − Q̃k‖2n. The problem with this procedure is that it
might be overly optimistic and thus it may result in an uncontrolled error. To see why, imagine
that for some index k0 whose associated Bellman error ‖Qk0 − T ∗Qk0‖2ν is “large”, the regression
procedure returns an estimate such that ‖Qk0 − Q̃k0‖2ν � ‖Qk0 − T ∗Qk0‖2ν (for example, because
the regression procedure might be biased towards action-values close to zero, Qk0 might be close to
zero, while T ∗Qk0 might be far from zero, cf. also Figure 1). As a result, the above procedure will
likely select k0, and thus might miss some other index with a lower Bellman error.

To avoid this problem, we must guard the procedure against the underestimation of the Bell-
man error. BERMIN achieves this by correcting ‖Qk − Q̃k‖2ν with ‖T ∗Qk − Q̃k‖2ν . Since
‖Qk − T ∗Qk‖2ν ≤ 2[‖Qk − Q̃k‖2ν + ‖T ∗Qk − Q̃k‖2ν ], the correction indeed prevents the choice of
an overly optimistic estimate. The first term of the right-hand side can be estimated by ‖Qk−Q̃k‖2n.
We further assume that we are provided with a (tight) high-probability upper bound, b̄k, on
‖T ∗Qk − Q̃k‖2ν , i.e., ‖T ∗Qk − Q̃k‖2ν ≤ b̄k with high probability. We propose to select the action-
value function corresponding to the minimum of ‖Qk − Q̃k‖2n + b̄k. If b̄k is a sufficiently tight
bound, we expect that using b̄k in place of ‖T ∗Qk − Q̃k‖2ν will not introduce any significant further
bias.

We want to take care of one more detail. We would like our procedure to handle situations where the
number of candidate action-value functions, P , is very large, or even potentially infinite. The latter
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Figure 1: Consider the problem of estimating the Bellman error ‖Qk − T ∗Qk‖2ν . If T ∗Qk is
replaced by a surrogate Q̃(1)

k , ‖Qk− Q̃(1)
k ‖2ν gives a relatively good estimate of this quantity because

Q̃
(1)
k is close to T ∗Qk. However, when Q̃(2)

k replaces T ∗Qk, the resulting estimate of the Bellman
error becomes poor and ‖Qk − Q̃(2)

k ‖2ν would be an underestimate of the true Bellman error. This
might lead to the unjust selection of the candidate Qk. One way to protect oneself against such
mistakes is to take into account how well the surrogate Q̃k approximates T ∗Q.

Algorithm 1 BERMIN({Qk}k=1,2,...,D(m,n),REGRESS(·), δ, a,B, τ)

1: Split D(m,n) into two disjoint parts: D(m,n) = D′m ∪ D′′n.

2: Choose (Ck) such that S =
∑
k≥1 exp(− (1−a)2an

16B2τ(1+a)Ck) <∞.
3: Choose (δ′k) such that

∑
k≥1 δ

′
k = δ/2.

4: for k = 1, 2, . . . do
5: (Q̃k, b̄k)← REGRESS(D′m,k, δ′k)

6: ek ← 1
|D′′

n |
∑

(X,A)∈D′′
n

(Qk(X,A)− Q̃k(X,A))2

7: RRL
k ← 1

(1−a)2 ek + b̄k
8: end for
9: k̂ ← argmink≥1

[
RRL
k + Ck

]
10: return k̂

situation arises when one transforms the algorithm into an anytime method, whose computation
budget may or may not be limited, which keeps generating candidates if given more time. As a
consequence of this, we add another penalty term that prevents optimistic selection bias and we will
let P =∞. If P is finite and small compared to n, this penalty term can safely be ignored.

BERMIN, shown as Algorithm 1, implements the described ideas. The algorithm’s inputs are the
candidate action-value functions, the dataset D(m,n), a regression procedure REGRESS, a desired
error probability δ, and three constants: 0 < a < 1, B, and τ . Here a is a tuning parameter, the
constant B is the bound on all functions involved (that is Qk, Q̃k, T ∗Qk, and b̄k), and τ is the
forgetting time of the Markov chain (cf. [1]). The effect of these values on the quality of the solution
is quantified in Theorem 1.

2.1 Theoretical Guarantee and Conclusions

In this section we state our main result, which shows that BERMIN has an oracle-like behavior. We
prove the result under the following assumptions:

Assumption A1 Assume that the following hold:

1. The standard offline sampling assumption is satisfied by the data set D′′n =
{(X1, A1, R1, X

′
1), . . . , (Xn, An, Rn, X

′
n)}. The time-homogeneous Markov chain

X1, X2, . . . , Xn uniformly quickly forgets its past with a forgetting time τ .

2. The functions Qk, Q̃k, T ∗Qk (k ≥ 1) are bounded by a deterministic quantity B > 0.

3. The functions Qk (k ≥ 1) are deterministic.
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4. For each k and for any 0 < δ′k < 1, (Q̃k, b̄k) = REGRESS(D′m,k, δ′k) are σ(D′m)-
measurable, b̄k ∈ [0, 4B2] and ‖Q̃k − T ∗Qk‖2ν ≤ b̄k holds with probability at least 1− δ′k.

5. For (Xi, Ai, Ri, X
′
i) ∈ D′′n, the distribution of (Xi, Ai) given D′m is ν:

P {(Xi, Ai) ∈ U |D′m} = ν(U) for any measurable set U ⊂ X ×A.

The following theorem is the main result of this work.
Theorem 1 (Model Selection for RL/Planning). Let Assumption A1 hold. Consider the BERMIN

algorithm used with some 0 < a < 1, 0 < δ ≤ 1, and (Ck)k≥1 such that S ,∑
k≥1 exp

(
− (1−a)2an

16B2τ (1+a)Ck

)
< ∞ holds. Let k̂ be the index selected by BERMIN. Then, with

probability at least 1− δ,

‖Qk̂ − T
∗Qk̂‖

2
ν ≤

4(1 + a) min
k≥1

{
2

(1− a)2
‖Qk − T ∗Qk‖2ν +

3

(1− a)2
b̄k + 2Ck

}
+

96B2τ (1 + a)

(1− a)2an
ln

(
4S

δ

)
.

Note that Ck = 32B2τ(1+a)
(1−a)2an ln(k) satisfies S < ∞ (in particular, with this choice we get S =

π2/6). Detailed discussion of the assumptions and the theorem is presented in the full version of
this paper [1].

Our main theoretical result, Theorem 1, is a finite-sample high-probability upper bound that shows
that the Bellman error of the action-value function selected by BERMIN is almost as small as that
of an oracle who has access to the true Bellman errors. This result can further be elaborated to show
that BERMIN can be made adaptive in the sense that it can compete with an oracle who selects the
model with the smallest error bounds [1]. As far as we know, this is the first work that considers
adaptivity in a reinforcement learning scenario. The main message of our results is that just like in
supervised learning, it is possible to learn almost as fast as if one had extra a priori information.

Although in this paper we made some progress toward reinforcement learning algorithms that re-
quire minimum human supervision, the problem is far from being solved. In particular, the following
questions require further investigation:

• How to generate the list of candidate action-value functions Q1, Q2, . . .?
• What is the relation between the quality of the solution of the fixed point of the Bellman

optimality operator and the performance of the corresponding greedy policy?
• In the full version of this paper [1], we derived some data-dependent bounds on the excess-

risk of a regression procedure that operates in a large function space which suited our
immediate needs (i.e., b̄ returned by REGRESS). However, the bound is asymptotic in
nature and is potentially suboptimal. Can this bound be improved?
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[2] Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010.
[3] Andrew R. Barron. Complexity regularization with application to artificial neural networks. In

G. Roussas, editor, Nonparametric Function Estimation and Related Topics, pages 561–576.
Kluwer Academic Publishers, 1991.
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