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Abstract. We consider bounded resource planning in a Markovian de-
cision problem, i.e., the problem of finding a good policy given access to
a generative model of the environment and a limit on the computational
resources. We propose to use fitted Q-iteration algorithm with penalized
(or regularized) least-squares regression as the regression subroutine to
address the problem of selecting an appropriate function approximator
in each iteration. The algorithm is presented in detail for the case when
the function space is a reproducing-kernel Hilbert space underlying a
user-chosen kernel function. We derive bounds on the quality of the so-
lution and argue that how data-dependent penalties can lead to almost
optimal performance. A simple example is used to illustrate the benefits
of using a penalized procedure.

1 Introduction

Regularization has proven an effective tool in machine learning and in particular
in supervised learning. The main idea is to consider the learning problem as an
optimization problem where one minimizes the sum of an empirical error term
and a complexity penalty (regularizer) that penalizes complex solutions. The
tradeoff between the empirical error term and the penalty term is controlled
by a single numerical value, the regularization coefficient, which multiplies the
penalty term. This way the problem of model selection in a given family of
functions is reduced to the problem of choosing a single numerical value. When
the parameter is chosen in an appropriate way based on the data or by complexity
regularization, the resulting procedure is known to adapt to the complexity of
the target function automatically, converging almost as fast as if the model was
known beforehand (e.g., [9]).

Recently the problem of tuning function approximators has received consid-
erable attention in the reinforcement learning (RL) community. For example,
[15] considered parameterized function approximation architecture where the
parameters are changed to better minimize the Bellman residual error, and [19]
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constructed new basis functions from the Bellman residual in fitted value itera-
tion. (For other similar approaches see the references in these papers.) Further-
more, non-parametric regression methods are also used where the function rep-
resentation can potentially adapt to the actual difficulty of the problem. Exam-
ples of this approach include the kernel-based RL method [18] that uses kernel-
regression, the work of [12] where support vector regressors are used to represent
policies in an approximate policy iteration procedure, the regression tree-based
fitted Q-iteration algorithm [7], or the GPTD algorithm [6] that builds on Gaus-
sian processes regression. Moreover, nonparametric regression-based approaches
have recently been used in computational finance in the closely related problem
of pricing financial derivatives [22, 13].

In this work we consider a nonparametric regression based approach, but
one that builds on penalized least-squares. Given that penalized least-squares is
one of the most successful approaches to supervised regression, it is surprising
that it has not been thoroughly investigated in RL. The only works that we
know of that used this approach are [10], [14] and [8]. Penalized least-squares
with L2-penalties for finding the value function of a policy given a trajectory
in a deterministic system were explored by [10], while L1-penalties for the same
problem were considered in [14]. Motivated by the fact that the straightforward
implementation of penalized least-squares involves a nontrivial computational
cost, both papers focused on computational efficiency. On the other hand, [8]
recently analyzed Regularized Policy Iteration methods that use Least Squares
Temporal Difference (LSTD) and a modified version Bellman Residual Mini-
mization (BRM) for policy evaluation and provided convergence results.

The problem considered in this paper is planning with bounded computa-
tional resources in a discounted Markovian Decision Problem (MDP): this is the
problem of finding a good policy given a limit on the amount of computation.
We do not assume the availability of a full model, but only that we can generate
transitions for any given action at any selected state. Such generative models
have been explored by a number of works (e.g. [11, 17]). Our work is comple-
mentary: We are guaranteed to achieve optimality in the limit (unlike [17]) and
we do not scale exponentially with the effective planning horizon (unlike [11]).
However, our method comes with other restrictions: The value functions should
come from “nice” function spaces.

In this paper, we consider the fitted Q-iteration algorithm of [7] where the
iterates are obtained by solving penalized least-squares regression problems. This
way we hope to borrow the strength of a state-of-the-art supervised learning
approach to help solving planning problems more efficiently. We develop specific
formulae for kernel-based fitted Q-iteration. Our main theoretical results bound
the quality of the solutions given that the algorithm spends a finite amount of
computational resources on the task. The strength of the approach is that the
complexity of the function class (and thus the performance) can be controlled by
tuning the penalty factor alone. We argue that non-trivial performance gains are
possible if one chooses the regularization coefficient in a data-dependent manner.
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Although finite-sample performance of a generic fitted Q-iteration has been
considered earlier [2, 1], to the best of our knowledge, this is the first work that
addresses finite-sample performance of a regularized RL algorithm and gives a
concrete algorithm to implement. The analysis presented here builds on these
previous works, but extends and improves them. The improvement is possible
partially because of the differences in the problem setups, e.g. in the previous
works only a single trajectory was available while here we assume the availability
of a generative model. The differences will be further explained after introducing
the results.

The rest of the paper is organized as follows. In Section 2, we present the
notations of infinite space MDP which is used in the paper. In Section 3, we
recall the fitted Q-iteration algorithm, which is the main algorithm studied in
this paper. The main result that relates the error during iterations with the
eventual value function Lp norm error is presented in Section 4. Bounds for L2

regularization are given in Section 5. Experimental illustration of the algorithm
is presented in Section 6.

2 Background and notation

Because we consider continuous state spaces, we need a few concepts from analy-
sis. These are introduced first. This is followed by the introduction to the Marko-
vian Decision Problems (MDPs). We refer the reader to [3] for further details.

For a measurable space with domain S, we let M(S) denote the set of prob-
ability measures over S. For p ≥ 1, a measure ν ∈ M(S), and a measurable
function f : S → R, we let ‖f‖p,ν denote the Lp(ν)-norm of f :

‖f‖
p
p,ν =

∫

|f(s)|pν(ds).

We shall also write ‖f‖ν to denote the L2(ν)-norm of f . We denote the space
of bounded measurable functions with domain X by B(X ), and the space of
measurable functions with bound 0 < K < ∞ by B(X ; K).

A finite-action discounted MDP is defined by a quintuple (X ,A, P, S, γ),
where X is the (possibly infinite) state space, A = {a1, a2, . . . , aM} is the finite
set of actions, P : X ×A → M(X ) is the transition probability kernel, P (·|x, a)
defining the next-state distribution upon taking action a in state x, S(·|x, a)
gives the corresponding distribution of immediate rewards, and γ ∈ (0, 1) is the
discount factor. We make the following assumptions on the MDP:

Assumption A1 (MDP Regularity) X is a compact subset of the d-dimensional
Euclidean space. We assume that the random immediate rewards are bounded by
R̂max and the expected immediate rewards r(x, a) =

∫

rS(dr|x, a) are bounded

by Rmax: ‖r‖∞ ≤ Rmax. (Note that Rmax ≤ R̂max.)

A stationary Markov policy π : X → M(A) is defined as a time-independent
(measurable) mapping from the current state x to a distribution over the set of
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actions π(·|x). A policy is deterministic if the probability distribution concen-
trates on a single action for all states. Deterministic stationary Markov policies
will be identified with mappings from states to actions π : X → A. In the rest
of this paper, we use the term policy to refer to stationary Markov policies.

The value of a policy π when it is started from a state x is defined as the total
expected discounted reward that is encountered while the policy is executed:

V π(x) = Eπ

[

∞
∑

t=0

γtRt

∣

∣

∣

∣

∣

X0 = x

]

.

Here Rt denotes the reward received at time step t; Rt ∼ S(·|Xt, At) and Xt

evolves according to Xt+1 ∼ P (·|Xt, At) where At is sampled from the distribu-
tion assigned to the past observations by π. For a policy π, At ∼ π(·|Xt), and
if π is deterministic we write At = π(Xt). The function V π is also called the
state-value function of policy π. Closely related to the state-value functions are
the action-value functions, defined by

Qπ(x, a) = Eπ

[

∞
∑

t=0

γtRt

∣

∣

∣

∣

∣

X0 = x, A0 = a

]

.

In words, the action-value function underlying π, denoted by Qπ(x, a), is the
expected discounted return when the decision process is started in state x and
the first action is a while all the subsequent actions are determined by the policy
π. It is easy to see that for any policy π, the functions V π and Qπ are bounded
by Rmax/(1 − γ).

Given an MDP, the goal is to find a policy that attains the best possible
values,

V ∗(x) = sup
π

V π(x),

for all states x ∈ X . Function V ∗ is called the optimal value function. A policy
is called optimal if it attains the optimal values V ∗(x) for any state x ∈ X , i.e.,
if V π(x) = V ∗(x) for all x ∈ X .

In order to characterize optimal policies it will be useful to define the optimal
action-value function, Q∗(x, a):

Q∗(x, a) = sup
π

Qπ(x, a).

Further, we say that a deterministic policy π is greedy w.r.t. an action-value
function Q ∈ B(X × A) and write π = π̂(·; Q), if, for all x ∈ X and a ∈ A,
π(x) ∈ argmaxa∈A Q(x, a).

Because A is finite, a greedy policy always exists no matter how Q is chosen.
Greedy policies are important because any greedy policy w.r.t. Q∗ is optimal.
Hence, to find an optimal policy it suffices to determine Q∗ and the search for
optimal policies can be restricted to deterministic stationary Markov policies.

The Bellman optimality operator T : B(X ×A) → B(X ×A) is defined by

(TQ)(x, a) = r(x, a) + γ

∫

max
a′∈A

Q(y, a′)P (dy|x, a).
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FittedQ(D,K,Q0)
// D: samples
// K: number of iterations
// Q0: Initial action-value function
Q← Q0 // Initialization
for k = 0 to K − 1 do

Q′ ← FitQ(Q, D, k)
Q← Q′

end for

return Q

Fig. 1. Fitted Q-Iteration

As it is well known, this operator T is a contraction operator w.r.t. the supremum-
norm with index γ. Moreover, the optimal action-value function is the unique
fixed point of T : TQ∗ = Q∗.

Throughout the paper F ⊂ { f : X → R } will denote some subset of real-
valued functions over the state-space X . For convenience, we will treat elements
of FM as real-valued functions f defined over X × A with the obvious identifi-
cation f ≡ (f1, . . . , fM ), f(x, aj) = fj(x), j = 1, . . . , M . The set FM will denote
the set of admissible functions used in the optimization step of our algorithm.

3 Algorithm

The algorithm studied in this paper is an instance of the generic fitted Q-
iteration method, whose pseudo-code is shown in Fig. 1. The algorithm attempts
to approximate the optimal action-value function Q∗ and mimics value iteration.
Since computing the Bellman operator applied to the last iterate at any point
involves evaluating a high-dimensional integral, we use a Monte-Carlo approx-
imation together with a regression procedure. For this purpose a set of sam-
ples, D is generated: D = {(X1, A1, R1, X

′
1), . . . , (XN , AN , RN , X ′

N )}. For the
sake of simplifying the analysis, we assume that the actions and next states
are generated by some fixed stochastic stationary policy πb: At ∼ πb(·|Xt),
X ′

t ∼ P (·|Xt, At), Rt ∼ S(·|Xt, At). Further, we assume that {Xt} is an i.i.d.
sequence and (Xt, At) ∼ ν. The state-marginal of ν is denoted by νX . We assume
that ν is a strictly positive measure, i.e., its support is X × A. Intuitively, this
ensures that the samples cover all state-action pairs. In particular for this we

must have that πb0
def

= mina∈A infx∈X πb(a|x) > 0.

The fitting procedure that we study in this paper is penalized (regularized)
least-squares. Assuming that in the kth iteration we use samples with index
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Nk ≤ i < Nk + Mk = Nk+1 − 1, the (k + 1)th iterate is obtained by

Qk+1 = argmin
Q∈FM

1

Mk

Nk+Mk−1
∑

i=Nk

[

Ri + γ max
a′∈A

Qk(X ′
i, a

′) − Q(Xi, Ai)
]2

+ λPen(Q),

(1)

where Pen(Q) is a customary penalty term and λ > 0 is the regularization coeffi-
cient.3 The first term is the sample-based least-squares error of using Q(Xi, Ai)
to predict Ri + γ maxa′∈A Qk(X ′

i, a
′) at (Xi, Ai). This term is the empirical

counterpart to the loss Lk(Q) = E
[

(Ri + γ maxa′∈A Qk(X ′, a′) − Q(X, A))2
]

.
The minimizer of this loss function is the regression function

E

[

Ri + γ max
a′∈A

Qk(X ′
i, a

′) |Xi = x, Ai = a

]

= (TQk)(x, a).

As the number of samples grows to infinite, the empirical loss converges to Lk

and we expect the iterate Qk+1 to converge to TQk. To achieve this, one needs
to balance between the expressiveness of the function class and its complexity
(or the resulted function would be overfitted or underfitted). This is the job of
the second term on the right hand side of (1). This term implicitly regulates
how complex solutions are acceptable. Choosing a larger λ means searching in a
smaller space of functions.

When FM is a Sobolev-space4 and Pen(Q) is the corresponding Sobolev-
space norm (the squared norm of the generalized partials of Q), this optimiza-
tion leads to thin-plate spline estimates, popular in the nonparametric statistics
literature [9]. When searching for a solution in general the order of smoothness
is unknown. Further, the optimal choice of the regularization coefficient would
depend on the target function. The approach taken in regression can be followed
here, too: Try different smoothness orders (this corresponds to different penalty
terms) with different regularization coefficients and choose between them using
a hold-out set. This leads to estimates whose rate of convergence has the optimal
order and scales with the actual roughness, Pen(TQk).

Optimizing over a Sobolev-space is a particular case of optimization in a
reproducing kernel Hilbert space (RKHS). Thus, more generally, we may start
with a Mercer kernel function k and set Pen(Q) to be the norm of Q in H, the
RKHS underlying k [20]. This way we obtain

Qk+1 = argmin
Q∈H

1

Mk

Nk+Mk−1
∑

i=Nk

[

Ri + γ max
a′∈A

Qk(X ′
i, a

′) − Q(Xi, Ai)
]2

+ λ ‖Q‖
2
H .

(2)

3 Note that in practice one would generate the samples whenever they are needed, i.e.,
there is no need to generate and store all the samples. However, it is also possible
to reuse the samples if sample generation is expensive. In such a case the analysis
needs to be changed slightly.

4 Sobolev-spaces generalize Hölder spaces by allowing functions which are only almost
everywhere differentiable. Thus, they can be useful for control problems where value-
functions often have ridges.
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According to the Representer Theorem (e.g., see [20]), every solution to Eq. (2)
is the sum of kernels centered on the observed samples: i.e.,

Q(x, a) =

Nk+Mk−1
∑

i=NK

αi−Nk+1k
(

(Xi, Ai), (x, a)
)

,

where α = (α1, . . . , αMk
)⊤ are the coefficient that must be determined. Let us

assume that Qk was obtained previously in a similar form:

Qk(x, a) =

Nk−1+Mk−1
∑

i=Nk−1

α
(k)
i−Nk−1+1k

(

(Xi, Ai), (x, a)
)

,

and let us collect the coefficients into a vector α
(k) ∈ R

Mk−1 . Replacing Q in
Eq. (2) by its expansion and using RKHS properties, we get

α
(k+1) = argmin

α∈R
M

k

1

Mk

∥

∥

∥
r + γK

+
α

(k) − Kα

∥

∥

∥

2

+ λα
⊤

Kα, (3)

with K ∈ R
Mk×Mk , K

+ ∈ R
Mk×Mk−1 ,

[K]ij = k
(

(Xi−1+Nk
, Ai−1+Nk

), (Xj−1+Nk
, Aj−1+Nk

)
)

,

[K+]ij = k
(

(X ′
i−1+Nk

, A
(k)
i−1+Nk

), (Xj−1+Nk−1
, Aj−1+Nk−1

)
)

,

where A
(k)
j = argmaxa∈A Qk(X ′

j , a), and r = (RNk
, . . . , RNk+Mk−1)

⊤. Solving
Eq. (3) for α we obtain

α
(k+1) = (K + MkλI)−1(r + γK

+
α

k).

The computational complexity of iteration k with a straightforward implemen-
tation is O(M3

k ) as it involves the inversion of a matrix. Thus, in order to under-
stand how the algorithm behaves it suffices to understand how the error behaves
after a certain number of iterations. This is what we do in the next two sections.

4 Error propagation

In order to analyze Fitted Q-iteration it is customary to rewrite it in the form

Qk+1 = TQk − εk, k ≥ 0,

ε−1 = Q∗ − Q0.
(4)

Note that these equations define the error sequence εk (εk : X×A → R) from the
sequence of iterates {Qk} and not vice versa (except for ε−1, the “initial error”,
which is introduced with a unified notation so that some expressions below can be
simplified). Here we are interested in studying how the errors {εk} influence the
performance of the policy greedy w.r.t. QK (K > 0 is the number of iterations in
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the algorithm; see Fig. 1). The idea is that the regression procedure controls the
size of the error functions εk, hence it must be possible to obtain good policies
eventually. For k ≥ 0 let πk be the greedy policy w.r.t. Qk: πk = π̂(·; Qk). Then
our goal is to bound the norm of V ∗−V πK (by the definition of an optimal value
function, this is guaranteed to be non-negative). In order to arrive at a bound
on this quantity we make a number of assumptions.

Remember that ν denotes the distribution underlying {(Xt, At)}. For the
sake of flexibility, we allow the user to choose another distribution, ρ ∈ M(X ),
to be used in assessing the procedure’s performance. It turns out that in the
technique that we use to bound the final error as a function of the intermediate
errors we need to change distributions between future state-distributions started
from ρ and ν. A natural way to bound the effect of changing from measure α
to measure β is to use the Radon-Nikodym derivative of α w.r.t. β:5 for any
nonnegative measurable function f ,

∫

f dα =
∫

f dα
dβ dβ ≤ ‖ dα

dβ ‖∞
∫

f dβ. This

motivates the following definition, very similar to the one introduced by [16]:

Definition 1 (Discounted-average Concentrability of Future-State Dis-
tribution) Given ρ ∈ M(X ), ν ∈ M(X ×A), m ≥ 0 and an arbitrary sequence
of stationary policies {πm}m≥1 let ρπ1,...,πm ∈ M(X×A) denote the future state-
action distribution obtained when the first state is obtained from ρ and then we
follow policy π1, then policy π2, . . ., then πm−1 at which step a random action
is selected with πm. Define

cρ,ν(m) = sup
π1,...,πm

∥

∥

∥

∥

d(ρπ1,...,πm)

dν

∥

∥

∥

∥

∞

,

with the understanding that cρ,ν(m) = ∞ if the future state-action distribu-
tion ρπ1,...,πm is not absolutely continuous w.r.t. ν. The first-order k-shifted
(k ≥ 0, k ∈ N) discounted-average concentrability of future-state distributions
is defined by

C(1,k)
ρ,ν = (1 − γ)

∞
∑

m=0

γmcρ,ν(m + k).

Similarly, the second-order k-shifted (k ≥ 0, k ∈ N) discounted-average concen-
trability of future-state distributions is defined by

C(2,k)
ρ,ν = (1 − γ)2

∑

m≥1

mγm−1cρ,ν(m + k).

In general cρ,ν(m) diverges to infinity as m → ∞. However, thanks to dis-

counting, C
(i,j)
ρ,ν will still be finite whenever γm converges to zero faster than

cρ,ν(m) converges to ∞. In particular, if the rate of divergence of cρ,ν(m) is

5 The Radon-Nikodym (RN) derivative is a generalization of the notion of probability
densities. According to the Radon-Nikodym Theorem, dα/dβ, the RN derivative of
α w.r.t. β is well-defined if β is σ-finite and if α is absolute continuous w.r.t. β. In
our case β is a probability measure, so it is actually finite.
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sub-exponential, i.e., if Γ = lim supm→∞ 1/m log cρ,ν(m) ≤ 0 then C
(i,j)
ρ,ν will

be finite. Note that the definition given here is not identical to the previous
similar definition by [16]. The main difference is that unlike in [16] here ρ is a
distribution over the states and ν is a distribution over state-action pairs. The
reason is that here we work with action-value functions, while [16] considered
state-value functions. Note that it is possible to avoid changing this definition
(as it was done in [1]), but the price is that the bounds will be more conservative.
Interestingly, the bounds here avoid the supremum norm arguments used by [1]
and are thus less conservative.

The main result of this section is the following theorem that bounds the loss
of using the learned policy πK as a function of the losses of the solutions of the
regression problems solved while running the algorithm:

Theorem 1 (Lp-bound) Consider a discounted MDP with a finite number of
actions. Let p ≥ 1. Assume that Qk and εk satisfy (4) and that πk is a policy
greedy w.r.t. Qk. Fix K > 0. Define E0 = ‖ε−1‖∞ and εK = max0≤k≤K ‖εk‖p,ν .
Then,

‖V ∗ − V πK‖p,ρ ≤ 2

[

1

1 − γ
+

γ

(1 − γ)2

]

γK/pE0 + 2

[

(C
(1,1)
ρ,ν )1/p

1 − γ
+

γ (C
(2,1)
ρ,ν )1/p

(1 − γ)2

]

εK .

5 L
2-bound for regularized kernel-based regression

In this section we assume that Qk+1 is obtained by solving the RKHS regular-
ization problem of Eq. (2). By using Prop. 3 of [23], the following generalization
of Theorem 21.1 of [9] to arbitrarily RKHS with smooth kernel functions can be
obtained. The result is for the case when X = [0, 1]d, but can be generalized to
other compact spaces with “regular” boundaries relatively easily.

Theorem 2 Assume that X = [0, 1]d, k ∈ Lip∗(s, C(X ,X )) and Qk is such
that TQk ∈ H(= Hk).

6 Furthermore, (for the sake of simplicity) assume that all
functions involved in the regression problem (the reward function, Qk, and the
result of the optimization problem(Qk+1) are bounded by some constant L > 0.7

Let Qk+1 be the solution of (2) with some λ > 0. Then

‖Qk+1 − TQk‖
2
ν ≤ 2λ ‖TQk‖

2
H +

c1L
4

Mkλd/s
+

c2 log(1/δ)

MkL4

with probability at least 1 − δ, for some c1, c2 > 0.

Note the trade-off in the bound: increasing λ increases the first term, but de-
creases the second. The optimal choice strikes a balance between these two terms.
It depends on the number of samples Mk, the complexity of the target function

6 For the definition of the generalized Lipschitz space Lip∗ see [23].
7 When this does not hold, a truncation argument is needed, but the result would

essentially be left unchanged.
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TQk measured by ‖TQk‖
2
H, the dimension of the problem d, and the degree of

smoothness measured by s. With λ = cM
−1/(1+d/s)
k the rate of convergence is

O(M
−1/(1+d/s)
k ), showing that smoother problems makes the problem easier - an

intuitive result. To find the optimal λ in a data-dependent manner, one may use
a hold-out set or any other model selection method. Note that the task of model
selection is reduced to selecting a single number, i.e. regularization coefficient.

As an immediate corollary of this result and Theorem 1 we get the following
result, assuming that in each iteration we are using the same regularization
parameter.

Corollary 3 (L2-bound) Assume that the conditions of the previous theorem
hold and we use the same number of samples in each iteration: M1 = M2 =
. . . = MK. Let πK be greedy w.r.t. the Kth iterate, QK . Define E0 = ‖ε−1‖∞
and let B = max0≤k≤K

∥

∥T kQ0

∥

∥

2

H
. Then, for any δ > 0 with probability at least

1 − δ,

‖V ∗ − V πK ‖ρ ≤ 2

»

1

1− γ
+

γ

(1− γ)2

–

γK/2E0+

2

"

(C
(1,1)
ρ,ν )1/2

1− γ
+

γ(C
(2,1)
ρ,ν )1/2

(1− γ)2

#

»

c1λB +
c2L

4

M1λd/s
+

c3 log(K/δ)

M1L4

–1/2

for some universal constants c1, c2, c3 > 0.

Note that by choosing λ = cM
−1/(1+d/s)
1 the second term is made converging

to zero with M1 → ∞ at a rate O(M
−1/(2(1+d/s))
1 ), corresponding to the op-

timal regression rate for smoothness order s. On the other hand, by choosing
K larger one can make the first term as small as desired. Note that the cost
of executing the procedure is O(KM3

1 ). Then given a computational budget B,
one may optimize K and M1 to get the best possible performance. Clearly, it
suffices to choose K = log(B), hence given the budget B the performance will
be Õ(B−1/(6(1+d/s))).

6 Illustration

In this section, we use a simple illustrative problem that we call the “sinus world”
to investigate the behavior of our regularized fitted Q-iteration algorithm. The
problem is designed such that it is especially easy to separate the effect of various
sources of difficulties in the learning problem. The state spaces of the ”sinus
world” is X = [−5, 5] with the dynamics described in Table 1. An RL agent
seeks to maximize its expected discounted sum of rewards in this world. From
any state, the agent may take a 0.2-long step to either left or right with some
noise added. We used a discount factor γ = 0.8. The reward function takes the
form of a sine function. Below we shall explain how this specific choice allows us
to control the difficulty of the problem.

Our regularized fitted Q-iteration algorithm uses the regularized fitting pro-
cedure of Eq. (2), and the RKHS defined by the kernel k

(

(x, a), (x′, a′)
)

=
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Initial State: x0 = −5

Transitions: xt+1 =

8

>

<

>

:

x̂t+1 x̂t+1 ∈ (−5, +5),

−5 x̂t+1 ≤ −5,

+5 x̂t+1 ≥ +5.

x̂t+1 = xt + at + ηt ; ηt ∼ N (0, σ2
η)

; at ∈ {−0.2, 0.2}

Rewards: r(xt) = sin(ωxt) + ξt, ξt ∼ N (0, σ2
r)

Table 1. Dynamics of the sinus world. The default parameters are ω = 4, ση = 0.05
and σr = 1.

k(x, x′) I{a=a′}. The state kernel is Gaussian k(x, x′) = exp
(

−‖x − x′‖
2
/(2σ2

k)
)

,
and I{E} denotes the indicator function: I{L} = 1 if and only if L is true and
I{L} = 0, otherwise. We used σ2

k = 0.1. In order to gain some speed and nu-
merical stability we decided to use sparsification when solving (2). We used the
sparsification method of [5] to selectively add a state-action pair to a set of
dictionary state-action pairs, which are used as a basis for approximating the
full solution. 8 The base distribution used to sample the states Xi is uniform.
In all cases we used K = 50 iterations and the full dataset in all iterations
(N1 = . . . = NK = 1, M1 = . . . = Mk = N).

Our aim here is to study the interplay between regularization and the problem
parameters such as the frequency of the reward function and the noise of the
reward. We will see that both frequency and noise change the difficulty of our
RL problem.

In order to understand the effect of reward frequency, note that the diffi-
culty of learning a target function in an RKHS depends on its norm in the
same space. With our Gaussian kernel k for a function f : X → R we have
‖f‖2

H ∝
∫

|f̂(ω)|2eσ2

k
ωdω, where f̂ is the Fourier transform of f . Thus, having

high frequencies in the target function make the problem difficult. Our target
functions have the form TQ, where Q is the element of the RKHS. Operator T
can be thought of as smoothing (convolution) in a spatial space which is equiv-
alent to multiplication with the Fourier transform of the probability transition
kernel in the Fourier domain. Hence, the RKHS norm of TQ is largely controlled
by the energy distribution in the power spectrum of the reward function: When

8 Sparsification limits the complexity of the model by reducing the degrees of the
freedom of the function space, which consequently acts as an implicit regularization
and reduces overfitting. This is apparent from the stability of the curves in the
following figures as λ→ 0.



12

the reward frequency is increased, the problem becomes more difficult. A differ-
ent source of difficulty is the noise in the reward function that increases sample
variance. If we do not use regularization and the signal-to-noise ratio is low, we
will fit to the noise instead of the signal.

In these experiments, we evaluate the performance using the relative error

maxa∈A

(‖Q∗(x,a)−QK(x,a)‖
2

‖Q∗(x,a)‖
∞

)

, where the L2 norm is measured on 1000 points

of a regular grid of the state space. The optimal action value function Q∗ is
calculated using value iteration over the discrete state space resulting from the
same regular grid of 1000 points, and QK is the estimated action value function
after K iterations of our algorithm.

Fig. 2(a) and Fig. 2(b) show the performance of our algorithm as a function
of the regularization coefficient λ, for three values of ω and five values of σr,
respectively. All curves are averaged over 30 repetitions of the experiments. In
Fig. 2(a) the results were obtained using N = 2000 samples, whereas in Fig. 2(b,
the results were obtained using N = 1000 samples. On both figures the error
bounds are standard error (standard deviation divided by the square-root of the
number of runs; here 30).

(a) (b)
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Fig. 2. (a) Effect of changing the reward frequency on the performance of our algo-
rithm. (b) Effect of adding noise to the reward function on the performance of our
algorithm.

The results of Fig. 2(a) indicate that increasing the reward frequency in-
creases the generalization error. They also show that for each reward frequency
there exists a regularization coefficient λ that attains the minimum error, which
is quite pronounced. With an appropriate choice of λ (which can be found by
e.g. using a hold-out set) significant savings in computation time are possible
(one needs less samples to achieve better results). The same conclusion holds for
the case when the reward function is noisy as shown on Fig. 2(b).
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In order to gain insight into how the algorithm works we plotted the optimal
action-value function for the left action and some action-value functions found
by our algorithm for three different values of λ. The result is shown in Fig. 3. In
this experiment, we used N = 200 samples. We see that for too small values of
λ (λ = 10−6) the procedure overfits, for too large values (λ = 0.5) it underfits,
while for intermediate values (λ = 0.01) the fit is acceptable.
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Fig. 3. The optimal action-value function (for the left action) and action-value func-
tions estimated by our algorithm for three values of λ and N = 200.

7 Discussion

In this paper we proposed to use penalized least-squares as the regression al-
gorithm in fitted Q-iteration for solving planning problems when a generative
model of the environment is available. The main idea is that penalized least-
squares is a powerful method of regression, which if used with an appropriate
model selection method like cross-validation, can adapt to the difficulty of the
regression problem. In this paper we took a step in showing that this is also
possible in planning.

In our future work, we plan to investigate fitted Q-iteration in multi-kernel
situations (different kernel functions correspond to different smoothness classes).
Adapting to the situation when the data lies on a low dimensional sub-manifold
of the observation space or when certain variables are irrelevant calls for tech-
niques that allow parameterized kernel families, where ideas from [21] could be
useful. A related idea is to use an L1-penalty in a LASSO-like procedure as an
effective feature selection and parameter estimation mechanism (e.g., [4]). An-
other important research topic is optimally sampling the world. We may use the
estimated action-value function in the middle of the fitted Q-iteration procedure
to actively choose the most informative samples for the next iteration. Moreover,
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observing the behavior of this algorithm applied to real-world problems is desir-
able and we plan to work on it. This request more attention on computational
aspects of our method.

Finally, let us note that even though the results of this paper are presented
for planning, the extension to the learning scenario when a good policy is to
be learned given a long, representative trajectory of some behavior policy seems
quite possible along the lines of [2, 1].
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