
Regularized Least-Squares Regression: Learning from a β-mixing Sequence

Amir-massoud Farahmanda,b, Csaba Szepesvária,∗
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Abstract

We analyze the rate of convergence of the estimation error in regularized least-squares regression when the
data is exponentially β-mixing. The results are proven under the assumption that the metric entropy of the
balls in the chosen function space grows at most polynomially. In order to prove our main result, we also
derive a relative deviation concentration inequality for β-mixing processes, which might be of independent
interest. The other major techniques that we use are the independent-blocks technique and the peeling
device. An interesting aspect of our analysis is that in order to obtain fast rates we have to make the
block sizes dependent on the layer of peeling. With this approach, up to a logarithmic factor, we recover
the optimal minimax rates available for the i.i.d. case. In particular, our rate asymptotically matches the
optimal rate of convergence when the regression function belongs to a Sobolev space.
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1. Introduction

Our main goal in this work is to study the convergence rate of regularized least-squares regression when
the covariates of the input form an exponentially β-mixing random process. Our main motivation is that
the usual assumption on the independence of the input data fails to hold in a number of important practical
applications. Possible relaxations of this assumption have been considered in both the statistics and machine
learning communities for a long time, under assumptions of various generality. A particularly widely-used
set of assumptions concerns the mixing rate of the input process (cf. Doukhan [1], Yu [2], Vidyasagar [3]).

The popularity of studying learning under mixing conditions is partly due to that many stochastic
processes with temporal dependence are mixing. For instance, Mokkadem [4] shows that certain ARMA
processes can be modeled as an exponentially β-mixing stochastic process, the notion that we shall also
use in this paper. More generally, globally exponentially stable “unforced” dynamical systems subjected to
finite-variance continuous density input noise give rise to exponentially β-mixing Markov processes [5]. This
class encompasses many dynamical systems common in the system identification and adaptive control. As
the final example, the geometric ergodicity of a strictly stationary Markov chain implies exponentially (or
faster) decaying β-mixing coefficients [6, Theorem 3.7].

Even though some research papers consider learning in a mixing setting, only a few of them consider
regularized empirical risk minimization. In particular, Xu and Chen [7] study this problem in reproducing
kernel Hilbert spaces (RKHS) when the input is an exponentially strongly (or, α-)mixing stationary se-
quence. Under an assumption similar to our metric entropy condition, they prove bounds on the estimation
error. However, their bounds are suboptimal (even in the asymptotic sense), unless the input process is
independent. Steinwart et al. [8] show consistency when the squared loss is replaced by more general loss
functions under relaxed conditions on the input sequence. In particular, they relax the notion of mixing and
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they also drop the stationarity assumption. However, they leave results concerning rates of convergence for
future work. Sun and Wu [9] replace the metric entropy condition of Xu and Chen [7] by an assumption
that requires that L−rk,µm is square integrable with respect to the (common) distribution of the covariates µ,
where k is the chosen kernel, Lk,µ is the corresponding integral operator and m is the unknown regression
function. Their rates, however, are not better (and sometimes worse) than those obtained by Xu and Chen
[7]. Mohri and Rostamizadeh [10] consider a stability-based analysis. They first derive general bounds for
stable algorithms for φ and β-mixing processes. As a corollary, they derive bounds on the estimation error
for regularization empirical risk-minimization over RKHSs when the input is a φ-mixing stationary sequence,
with the mixing coefficient decaying at a super-linear algebraic rate.

Let us now turn to the formulation of our main results. Let Dn =
(
(X1, Y1), . . . , (Xn, Yn)

)
be the input,

where Xi ∈ X and Yi ∈ [−L,L] (L > 0) are random variables, and X is a measurable subset of a Polish
space. We shall assume that ((Xt, Yt))t=1,2,... is a stationary exponentially β-mixing stochastic process
(the precise definitions will given in Section 2.1). Let m : X → R be the underlying regression function
m(x) = E [Yi|Xi = x], and µ denote the common distribution underlying (Xi). Let

L(m, m̂) =

∫
X
|m(x)− m̂(x)|2µ(dx) (1)

be the risk associated with the estimate m̂ : X → R. Consider the regularized (or penalized) least-squares
estimate m̂n

m̃n = argmin
f∈F

{
1

n

n∑
i=1

|f(Xi)− Yi|2 + λnJ
2(f)

}
,

m̂n(x) = TLm̃n(x) =


L if m̃n(x) > L,

m̃n if − L ≤ m̃n(x) ≤ L,
−L if m̃n(x) < −L,

(2)

where F is a suitable space of measurable real-valued functions with domain X , J is the so-called regular-
ization functional (or simply regularizer or penalizer), λn > 0 is the regularization coefficient, and TL is the
truncation operator.

There are various possibilities to choose the function space F and the regularizer J . For example, if
X = (0, 1) and J2(f) =

∫
|f (k)(x)|2dx for k > 1, the minimizer of (2) belongs to F = Ck(R), the space

of k-times differentiable functions, and is in particular, will be an appropriately-defined spline function.
More generally, when X is an open subset of Rd, for some k > 2d one may choose the regularizer J2(f)
to be the sum of the squared L2-norms of the function’s kth weak derivatives. In this case F becomes the
Sobolev-space Wk(Rd) (= {f : X → R : J2(f) <∞}). Even more generally, one may pick F as an RKHS

defined on domain X and J2(f) = ‖f‖2H, where ‖·‖H is the underlying inner-product norm of F . Note
that in all these cases (2) leads to a computationally tractable convex optimization problem, thanks to the
representer theorem [11, 12]. For more information about the RKHS-based approach to machine learning
the reader is referred to the books by Schölkopf and Smola [13], Shawe-Taylor and Cristianini [14], Steinwart
and Christmann [15].

The main contributions of this paper are as follows: First, we prove a relative deviation concentration
inequality for empirical processes, generalizing Theorem 2 of Kohler [16] from the i.i.d. processes to expo-
nentially β-mixing, stationary stochastic processes. Next, we apply this result to the analysis of regularized
least-squares regression. Under the assumptions that the true regression function belongs to the function
space F and the input is a stationary, exponentially β-mixing sequence, and some other standard technical
assumptions, we then derive a high-probability upper bound on the estimation error of this procedure. The
main result shows that, e.g., for the previously mentioned Sobolev space, with an appropriate choice of the
regularizer, the rate becomes the same as the optimal rate known to hold in the case when the inputs are
i.i.d. random variables. The main techniques that we use are the independent-block technique [2, 17] and
the peeling device [18]. To get fast rates, we have to vary the size of independent blocks according to the
layer of peeling.
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Figure 1: The structure of the block construction.

2. Definitions

The purpose of this section is to collect some definitions that we shall need later. Let N be the set of
positive natural numbers and N0 = N ∪ {0}. For a random variable U we shall use L(U) to denote its
probability law. For real numbers a and b, their maximum is denoted by a ∨ b. The norm ‖·‖ shall stand
for the 2-norm of vectors.

2.1. Mixing Processes

In what follows, unless otherwise stated, we let Z denote a Polish space. Let (Zt)t=1,2,... be a Z-valued
stochastic process. Let σl = σ(Z1, . . . , Zl) and σ′l+k = σ(Zl+k, Zl+k+1, . . .), where σ(Zi1 , Zi2 , . . . , Zik) is the
σ-algebra for the collection (Zi1 , Zi2 , . . . , Zik).

Definition 1 (β-mixing). The kth β-mixing coefficient for (Zt)t=1,2,... is defined as

βk = sup
l≥1

E

[
sup

B∈σ′l+k

∣∣P(B|σl)− P (B)
∣∣] .

The process (Zt)t=1,2,... is said to be β-mixing if βk
k→∞−−−−→ 0. Further, we say that (Zt)t=1,2,..., is exponentially

β-mixing process if for some constants β̄0 ≥ 0 and β̄1 > 0, we have βk ≤ β̄0 exp(−β̄1k).

2.2. Independent Blocks

Fix a positive natural number n ∈ N. In what follows we will need a partitioning of the set {1, 2, . . . , n}
determined by the choice of an integral block length an. The partition will have 2µn blocks with integral
length an such that n− 2an < 2µnan ≤ n and a “residual block”:

Hj = {i : 2(j − 1)an + 1 ≤ i ≤ (2j − 1)an}, (“head”)

Tj = {i : (2j − 1)an + 1 ≤ i ≤ 2jan}, (“tail”)

R = {2µnan + 1, . . . , n}, (“residual”)

for 1 ≤ j ≤ µn. Note that |R| < 2an. Also, let H = ∪1≤j≤µnHj . See Figure 1 for the illustration of this
construction.

Consider some sequence (zt)t=1,2,.... We shall adopt the following conventions: For a subset S of the
natural numbers N, z(S) shall denote the ordered list (zi)i∈S . When S is the interval {i, i + 1, . . . , j} for
i < j, we shall also use zi:j = z(S). Also, for j ∈ N we shall use zj = (z1, . . . , zj). These definitions are
appropriately extended to the case when (zt) is defined only for some subset of N.

Let us now introduce the independent blocks (IB) underlying a Z-valued stationary, stochastic process
(Zt)t=1,2,.... Fix n and consider (Hj)1≤j≤µn as defined above for some (an, µn). Take a sequence of random
variables Z ′(H) = (Z ′i : i ∈ H) such that 1) Z ′(H) is independent of Zn and 2) the blocks (Z ′(Hj) : j =
1, . . . , µn) are independent, identically distributed and each block has the same distribution as a block from
the original sequence, i.e.,

L(Z ′(Hj)) = L(Z(Hj)) = L(Z(H1)), j = 1, . . . , µn.

We refer to Z ′(H) as the (µn, an)-independent block sequence underlying Zn.
The following lemma, which we shall need later, upper bounds the difference between the expectation of

functions of Z(H) and Z ′(H).
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Lemma 1 (Yu [2], Lemma 4.1). For any measurable function h : Zanµn → R, we have

E
[
h(Z(H))− h(Z ′(H))

]
≤ ‖h‖∞ (µn − 1)βan .

Note that Yu only states this lemma for real-valued random variables. Since the extension to Z-valued
random variables is trivial, its proof is omitted.

2.3. Function Spaces

Let F be some space of measurable real-valued functions with a domain Z. In order to avoid measurability
problems in the case of uncountable collections of functions, throughout this work we will assume that the
class F of functions is permissible in the sense of Pollard [19, Appendix C]. This mild measurability condition
is satisfied for most classes of functions considered in practice.

Let us now define a derived function space F̄ and some empirical norms associated to F and F̄ . Fix
n and let (an, µn) and (Hj : 1 ≤ j ≤ µn) be as in the previous section. For f ∈ F , define the function
f̄ : Zan → R by

f̄(zan) =

an∑
i=1

f(zi),

and let F̄ = {f̄ : f ∈ F}. Now, fix a Z-valued sequence (zt)t=1,2,.... We equip the spaces F and F̄ with the
respective empirical norms ‖·‖z1:n and ‖·‖z(H1:µn ):

‖f‖2z1:n =
1

n

n∑
i=1

f2(zi) , (3)

‖f‖2z(H1:µn ) =
1

µn

µn∑
j=1

f̄2(z(Hj)) . (4)

In what follows, when Zn is clear from the context, by a slight abuse of notation we shall use the
abbreviations f̄(Hj) = f̄(Z(Hj)) and f̄(H ′j) = f̄(Z ′(Hj)).

Let M = (M, d) be a pseudo-metric space.1 The covering numbers of a totally bounded subset B of
M are defined for any positive ε > 0 as follows: The covering number N (ε,B, d) is the smallest number
of closed d-balls of M that cover B. For a function space G with [−M,M ]-valued functions and common
domain S, the empirical (`2-)covering numbers with respect to a finite sequence s1:n ∈ Sn are defined as the
covering numbers associated with the pseudo-metric ‖·‖s1:n , where this pseudo-metric is defined as in (3).
We denote these covering numbers by N2(ε,G, s1:n). Note that this definition can be applied to both the
pairs (F , ‖·‖z1:n) and (F̄ , ‖·‖z(H1:µn )) and gives rise to the empirical covering numbers N2(ε,F , ‖·‖z1:n) and

N2(ε, F̄ , ‖f‖z(H1:µn )). The logarithm of the covering number is called the metric entropy.

3. Relative Deviation Concentration Inequality

In this section, we prove a general concentration inequality valid for stationary β-mixing random processes
(Theorem 4). The result is an extension of Kohler [16, Theorem 2] and Györfi et al. [20, Theorem 19.3].
The proof uses the independent block technique. We start with two technical lemmas.

Lemma 2 (Relative Deviation Inequality). Consider a Z-valued, stationary, β-mixing sequence Z =
(Zt)t=1,2,... and a permissible class F of real-valued functions f with domain Z. Assume that supf∈F ‖f‖∞ ≤
M for some M > 0. Fix n ∈ N and ε, η > 0. Let Z ′(H) be a (µn, an)-independent blocks sequence with a

residual block R satisfying |R|n ≤
εη
6M . Then,

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi) − E [f(Z)]

η + |E [f(Z)] |

∣∣∣∣ > ε

}
≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(H ′j) − E

[
f̄(H1)

]
anη + |E

[
f̄(H1)

]
|

∣∣∣∣∣ > 2

3
ε

}
+ 2βanµn.

1A pseudo-metric d satisfies all properties of a metric except that d(x, y) = 0 does not imply that x = y.
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Proof. Let P denote the probability that we wish to bound. Pick any f ∈ F . By the stationarity of Z, the
triangle inequality, and the definition of f̄ we get∣∣∣∣ 1

n (
∑n
i=1 f(Zi)− nE [f(Z)])

η + |E [f(Z)] |

∣∣∣∣ ≤
∣∣∣∣∣

1
n (
∑µn
j=1 f̄(Hj)− µnE

[
f̄(H1)

]
)

η + 1
an
|E
[
f̄(H1)

]
|

∣∣∣∣∣+

∣∣∣∣∣
1
n (
∑µn
j=1 f̄(Tj)− µnE

[
f̄(T1)

]
)

η + 1
an
|E
[
f̄(T1)

]
|

∣∣∣∣∣
+

∣∣∣∣∣
1
n (
∑
j∈R f(Zj)− |R|E [f(Z)])

η + |E [f(Z)] |

∣∣∣∣∣ .
Since ‖f‖∞ ≤ M , the third term is not larger than 2M |R|

ηn . Now, using |R|n ≤
εη
6M we get that this term is

not larger than ε/3. Noting that due to the stationarity of Z, the first two terms are identically distributed,
so we get

P ≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
n (
∑µn
j=1 f̄(Hj)− µnE

[
f̄(H1)

]
)

η + 1
an
|E
[
f̄(H1)

]
|

∣∣∣∣∣ > ε

3

}

= 2P

{
sup
f̄∈F̄

∣∣∣∣∣
2an
n (
∑µn
j=1 f̄(Hj)− µnE

[
f̄(H1)

]
)

ηan + |E
[
f̄(H1)

]
|

∣∣∣∣∣ > 2ε

3

}
.

Since by construction 2an
n ≤

1
µn

, P can further be bounded by

2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(Hj) − E

[
f̄(H1)

]
anη + |E

[
f̄(H1)

]
|

∣∣∣∣∣ > 2ε

3

}
.

Let us now apply Lemma 1 to bound this probability using the independent blocks sequence Z ′(H). For
this, choose h to be the indicator function of the event

sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(Hj)− E

[
f̄(H1)

]
anη + |E

[
f̄(H1)

]
|

∣∣∣∣∣ > 2ε

3
.

Then, ‖h‖∞ ≤ 1. Therefore, Lemma 1 and L(Z ′(H1)) = L(Z(H1)) gives the bound

P ≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(H ′j)− E

[
f̄(H1)

]
anη + E

[
f̄(H1)

] ∣∣∣∣∣ > 2ε

3

}
+ 2βanµn.

The following lemma relates the covering numbers N2(ε,F , z1:n) and N2(ε, F̄ , z(H1:µn)).

Lemma 3 (Covering Number). For any (z1, . . . , zn) ∈ Zn, we have

N2(ε, F̄ , z(H1:µn)) ≤ N2

(
1

2an

√
2(1− |R|n ) ε,F , z1:n

)
.

Proof. Pick any function f : Z → R. Then
∥∥f̄∥∥2

z(H1:µn )
can be bounded in terms of ‖f‖2z1:n as follows:

∥∥f̄∥∥2

z(H1:µn )
=

1

µn

µn∑
j=1

∣∣∣∣∣∣
∑
i∈Hj

f(zi)

∣∣∣∣∣∣
2

≤ a2
n

µnan

∑
i∈H
|f(zi)|2

≤ 2a2
n

n(1− |R|n )

n∑
i=1

|f(zi)|2 =
2a2
n

1− |R|n
‖f‖2z1:n .
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Here we first applied Jensen’s inequality and then we used 2anµn = n− |R| and that H ⊆ {1, . . . , n}.
Now consider f1, f2 ∈ F . Using the previous inequality and f1 − f2 = f̄1 − f̄2 we get∥∥f̄1 − f̄2

∥∥2

z(H1:µn )
≤ 2a2

n

1− |R|n
‖f1 − f2‖2z1:n .

Therefore any

√
2(1− |R|n )

2an
ε-cover of F is an ε-cover of F̄ .

We are ready to state the main result of this section, generalizing Theorem 2 of Kohler [16] and Theorem
19.3 of Györfi et al. [20] (quoted as Lemma 7 in the appendix) to the exponentially β-mixing stationary
stochastic processes.

Theorem 4 (Relative Deviation Concentration Inequality). Consider a Z-valued, stationary, β-mixing
sequence Z = (Zt)t=1,2,... and a permissible class F of real-valued functions f with domain Z. Let n ∈ N,
and K1,K2 ≥ 1, and choose η > 0 and 0 < ε < 1. Assume that the following conditions hold: For any
f ∈ F ,

(C1) ‖f‖∞ ≤ K1, (uniform boundedness)
(C2) E

[
f2(Z)

]
≤ K2E [f(Z)]. (variance)

Further, consider the (an, µn)-independent blocks with the residual block R and assume that the following
also hold:

(C3)
√
nε
√

1− ε√η ≥ 576
(
2K1an ∨

√
2anK2

)
(small block-size)

(C4) |R|
n ≤

εη
6K1

and |R| ≤ n
2 , (small residual block)

(C5) For all z1, . . . , zn ∈ Z and all δ ≥ ηan
8 ,

√
µnε(1− ε)δ

96
√

2an (K1 ∨ 2K2)
≥
∫ √δ

ε(1−ε)δ
16an(K1∨ 2K2)

[
logN2( u

2an
,F , z1:n)

] 1
2

du.

(small metric entropy)

Then, there exists universal constants c1, c2 > 0 such that

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi)− E [f(Z)]

η + E [f(Z)]

∣∣∣∣ > ε

}
≤ c1 exp

(
−c2

µnan η ε
2 (1− 2

3ε)

a2
nK

2
1 ∨ anK2

)
+ 2βanµn .

The constants can be set to c1 = 120 and c2 = 1
213 34 .

Note that in the metric entropy condition (C5) we use the covering numbers of F – unlike Kohler [16]
and Györfi et al. [20] who consider the covering numbers of a smaller subset of F . We chose to present a
simpler (weaker) result to simplify the presentation. The use of the peeling device in the proof of Theorem 5
obviates the need for a stronger result.

Proof. Introduce the independent blocks sequence {Z ′(Hj) : j = 1, . . . , µn} as defined in Section 2.2. By
construction and the stationarity of the process, L(Z ′(Hj)) = L(Z(Hj)) = L(Z(H1)). Lemma 2 relates
the relative deviation of the original empirical process to the relative deviation of the independent blocks
process:

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi)− E [f(Z)]

η + E [f(Z)]

∣∣∣∣ > ε

}
≤ 2P

{
sup
f̄∈F̄

∣∣∣∣∣
1
µn

∑µn
j=1 f̄(H ′j)− E

[
f̄(H1)

]
anη + E

[
f̄(H1)

] ∣∣∣∣∣ > 2

3
ε

}
+ 2βanµn ,

where we used (C1) and (C4) to verify the conditions of Lemma 2.
Since (f̄(H ′j))

µn
j=1 are i.i.d., we can use Lemma 7 to analyze the concentration of the relative deviations

defined with the independent blocks, by choosing n of that theorem to be the number of independent blocks
µn and η to be anη. Let us now verify the conditions of this theorem:
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(1) Condition (C1) implies that for any zan ∈ Z
an we have |f̄(zan)| ≤ anK1. Let K ′1 = anK1.

(2) Use Jensen’s inequality, the stationarity of the process, and (C2) to get E
[
f̄2(H ′j)

]
=

E
[
(
∑an
i=1 f(Z ′i))

2
]
≤ a2

nE
[
f2(Z ′1)

]
≤ a2

nK2E [f(Z ′1)] = anK2E
[
f̄(H ′j)

]
. Let K ′2 = anK2.

(3) Condition (A3) of Lemma 7 translates into
√
µnε
√

1− ε√anη ≥ 288 (2K ′1 ∨
√

2K ′2) for 0 < ε < 1 and
η > 0. As |R| ≤ n

2 , therefore anµn >
n
4 , and this condition is satisfied whenever

√
nε
√

1− ε√η ≥ 576 (2K1an ∨
√

2anK2) ,

which is (C3).

(4) Condition (A4) of Lemma 7 requires that for all z(H1), . . . , z(Hµn) ∈ Zan and all δ ≥ anη
8 ,

√
µnε(1− ε)δ

96
√

2 (K ′1 ∨ 2K ′2)
≥
∫ √δ

ε(1−ε)δ
16 (K′1 ∨ 2K′2)

[
logN2

(
u,B(F̄ , δ), z(H1:µn)

)] 1
2 du , (5)

where B(F̄ , δ) = {f̄ ∈ F̄ : 1
µn

∑µn
j=1 f̄

2(z(Hj)) ≤ 16δ}. Since B(F̄ , δ) ⊂ F̄ , we have

N2

(
u,B(F̄ , δ), z(H1:µn)

)
≤ N2

(
u, F̄ , z(H1:µn)

)
. According to Lemma 3, the latter is bounded by

N2(ε, F̄ , z(H1:µn)) ≤ N2

(
1

2an

√
2(1− |R|n ) ε,F , z1:n

)
≤ N2

(
ε

2an
,F , z1:n

)
.

Here the second inequality holds because |R| ≤ n
2 , which is satisfied by the second part of (C4).

Plugging in K ′1 and K ′2, we get the following condition which is sufficient for (5):

√
µnε(1− ε)δ

96
√

2an(K1 ∨ 2K2)
≥
∫ √δ

ε(1−ε)δ
16an(K1∨ 2K2)

[
logN2

(
u

2an
,F , z1:n

)] 1
2

du

which is in fact (C5).

Therefore the application of Lemma 2 and Lemma 7 leads to

P

{
sup
f∈F

∣∣∣∣ 1
n

∑n
i=1 f(Zi)− E [f(Z)]

η + E [f(Z)]

∣∣∣∣ > ε

}
≤ 120 exp

(
−

µnanη
4
9ε

2(1− 2
3ε)

128× 2304× (a2
nK

2
1 ∨ anK2)

)
+ 2βanµn ,

which is the desired result.

4. Analysis of Regularized Least-Squares Estimates

In this section we prove a high probability upper bound on the risk of regularized least-squares estima-
tor (2) with dependent data. Theorem 5 shows the dependence of the error on the number of samples n
and the capacity of the function space F in the asymptotic regime. The upper bound obtained is, up to a
logarithmic factor, the same as the one in the i.i.d. setting.

We make the following assumptions. As before X is a Polish space, F is a permissible class of real-
valued functions with domain X . The penalty J2 : F → R is non-negative valued. For R > 0, we let
BR = {f ∈ F : J2(f) ≤ R2}.

Assumption A1 (Exponential Mixing) The process ((Xt, Yt))t=1,2,... is an X × R-valued, stationary,
exponentially β-mixing stochastic process. In particular, the β-mixing coefficients satisfy βk ≤ β̄0 exp(−β̄1k),
where β̄0 ≥ 0 and β̄1 > 0.

7



Assumption A2 (Capacity) There exist C > 0 and 0 ≤ α < 1 such that for any u,R > 0 and all
x1, . . . , xn ∈ X ,

logN2(u,BR, x1:n) ≤ C
(
R

u

)2α

.

Assumption A3 (Boundedness) There exists 0 < L < ∞ such that the common distribution of Yt is
such that |Yt| ≤ L almost surely.

Assumption A4 (Realizability) The regression function m(x) = E [Y1|X1 = x] belongs to the function
space F .

Before stating the main result, we would like to remark about our assumptions.

Remark 1. If the mixing rate of the process is slower (e.g., βk = O(k−β̄) for β̄ > 0), we may still have con-
sistent estimators that satisfy a behavior such as limn→∞ E [L(m, m̂n)]→ 0 (or stronger), where L(m, m̂n)
is defined in (1). The rate of convergence, however, might be slower than what we obtain in Theorem 5.

Remark 2. The capacity Assumption A2 is mild, at least when X ⊂ Rd for some d ∈ N and ‖Xt‖ is bounded
almost surely. For instance, Theorem 4 of Zhou [21] shows its validity for a large class of RKHS with
sufficiently smooth kernel functions. The reader is referred to Lemmas 20.4, 20.6 of Györfi et al. [20], Zhou
[22, 21], van de Geer [18], and the discussion on pp. 226–279 of Steinwart and Christmann [15] for some
more examples.

Remark 3. We define the approximation error arising from restricting the estimators to F by

a(m;F) = inf
f∈F
L(m, f) .

When Xt ∈ Rd, ‖Xt‖ and |Yt| are bounded a.s., and F is a Sobolev-space then a(m,F) = 0 (cf. Theorem 20.4
of Györfi et al. [20]). Therefore, a proper choice of regularization coefficient leads to a universally consistent
procedure. On the other hand when F is “smaller”, a(m;F) might be positive. In this case let m′ be the
minimizer of L(m; f) over F , which we assume to exist for a moment. A simple calculation gives

L(m, m̂n) ≤ 2 [a(m;F) + L(m′, m̂n)] .

When the approximation error exists, the result of Theorem 5 can be shown to hold for the second term in the
right-hand side (RHS), the so-called estimation error. Results regarding the behavior of the approximation
error a(m;F) for “small” RKHSs are discussed, e.g., by Smale and Zhou [23]. Also it is notable that model
selection procedures can be used to balance the estimation and approximation errors and consequently to
lead to adaptive procedures with close to optimal learning rates, see e.g., Kohler et al. [24]. The detail of
the way model selection should be implemented and analyzed, however, is outside the scope of this paper.

The main result of this work is as follows.

Theorem 5. Let Assumptions A1–A4 hold. Define the estimate m̂n by (2) with λn =
[

1
nJ2(m)

] 1
1+α

. There

exists constants c1, c2 > 0, where c1 depends only on L and c2 depends only on L and β̄0, such that for any
fixed 0 < δ < 1 and n sufficiently large,

L(m, m̂n) ≤ c1
[
J2(m)

] α
1+α n−

1
1+α

[
log(n ∨ c2/δ)

β̄1

]3

holds with probability at least 1 − δ. In particular, when α = 0, the above bound holds for n ≥ c3 exp(β̄1),
while in the case of α > 0 it holds when n ≥ c3 exp(β̄1) ∨ 1/J2(m) and

1

n

(
c4 log(n ∨ c2/δ)

β̄1

) 4+5α
α

≤ J2(m) , (6)

where c3, c4 > 0 depends only on L.
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This theorem indicates that (disregarding the logarithmic term) the asymptotic convergence rate is

O(n−
1

1+α ). This is notable because it is known to be the optimal minimax rate for the i.i.d. samples under
the assumption that m ∈ F and F has a packing entropy in the same form as in the upper bound of
Assumption A2 [25]. Note that the choice of λn in the theorem depends on both α and J(m), which might
be unknown in practice. One can use a model selection procedure to adaptively select parameters so that
the estimator achieves a rate almost as fast as the rate based on the unknown parameters of the problem.
For an example of such a procedure for the i.i.d. input, refer to Kohler et al. [24]. Let us now turn to the
proof.

Proof. The proof, which is similar in spirit to that of Theorem 21.1 of Györfi et al. [20], consists of the
following main steps:

• Decompose the error into two terms T1,n and T2,n that will be defined shortly. [Step 1]

• Use the minimizer property of the empirical risk minimizer to control T1,n. [Step 2]

• Analyze T2,n: Apply the peeling device [Step 3], then introduce peeling-dependent IBs [Step 4]. After-
wards use the relative deviation concentration inequality of Theorem 4 to arrive at a high probability
upper bound on T2,n. [Step 5]

• Optimize the upper bound. [Step 6]

Without loss of generality in what follows we shall assume that L ≥ 1. Let us now carry out the steps of
the proof.
Step 1. Define the following error decomposition:∫

X
|m̂n(x)−m(x)|2µ(dx) = E

[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
= T1,n + T2,n,

where

1

2
T1,n =

1

n

n∑
i=1

[
|m̂n(Xi)− Yi|2 − |m(Xi)− Yi|2

]
+ λnJ

2(m̂n),

T2,n = E
[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]
− T1,n.

Step 2. The minimizer property of m̃n and the fact that for any u ∈ R, if |Y | ≤ L, then |TLu−Y | ≤ |u−Y |
imply that

1

2
T1,n ≤

1

n

n∑
i=1

[
|m̃n(Xi)− Yi|2 − |m(Xi)− Yi|2

]
+ λnJ

2(m̃n)

≤ 1

n

n∑
i=1

[
|m(Xi)− Yi|2 − |m(Xi)− Yi|2

]
+ λnJ

2(m) = λnJ
2(m).

Therefore

T1,n ≤ 2λnJ
2(m). (7)

Step 3. Fix any number t satisfying

t ≥ 1

n
. (8)
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Our goal now is to study P {T2,n > t}. We have

P {T2,n > t} = P

{
2
(
E
[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

] )
− 2

n

n∑
i=1

[
|m̂n(Xi)− Yi|2 − |m(Xi)− Yi|2

]
> t+ 2λnJ

2(m̂n) + E
[
|m̂n(X)− Y |2|Dn

]
− E

[
|m(X)− Y |2

]}
.

Let z = (x, y) and define the following class of function spaces for l = 0, 1, · · · :

Gl ,

{
g : X × R→ R : g(z) = |TLf(x)− TLy|2 − |m(x)− TLy|2, f ∈ F , J2(f) ≤ 2lt

λn

}
.

Note that functions in Gl satisfy ‖g‖∞ ≤ K1 , 4L2. Applying the peeling device, we get

P {T2,n > t} ≤
∑
l≥0

P
{

sup
g∈Gl

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
>

1

2

}
. (9)

We now bound each term with the help of Theorem 4. For this, we shall choose an IB sequence tuned
separately to each value of l.
Step 4. Fix some value of l ∈ N0. Let the block size and the number of blocks be defined by

an,l =
⌊
a′n,l
⌋

and µn,l =

⌊
n

2an,l

⌋
, (10)

where

a′n,l = (nt)γ(2l)p and µ′n,l =
n

2a′n,l
=

n1−γ

2tγ(2l)p
.

The values of γ, p > 0 will be specified later.
Note that by the assumptions t ≥ 1

n and p, γ > 0, we have an,l ≥ 1. Let Rl be the residual block in
the (an,l, µn,l)-partitioning of {1, 2, . . . , n}. The block size an,l, the number of blocks µn,l, and the residual
block size |Rl| have the following simple properties that will be used later:

n− |Rl| = 2an,lµn,l ≤ n; |Rl| < 2an,l; µ′n,l ≤ µn,l.

Let us show that if n and l are sufficiently large (and if γ, p satisfy certain properties) then the summands
in (9) will be zero. We first claim that if

4nK1 ≤ (a′n,l)
1/p and (11)

γ ≤ p (12)

hold then
E[g(Z)]− 1

n

∑n
i=1 g(Zi)

2lt+E[g(Z)]
≤ 1

2 . Indeed,

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
≤ 2K1

2lt
.

Using (8) and (12), we get a′n,l = (nt)γ(2l)p ≤ (n t·2l)p, which is equivalent to 2lt ≥ n−1(a′n,l)
1/p. Combining

this with (11) gives the desired statement. Now, it is easy to see that (11) follows from

p ≤ 1

2
≤ 1, (13)

a′n,l ≥
n

8
, and (14)

n ≥ c1 , 4 × 82 × K1 ≥ 4
p

1−p 8
1

1−p K
p

1−p
1 . (15)
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From now on we will assume that in addition to (8), the constraints (12), (13), and (15) hold too. Under
these conditions it suffices to study the case when l is such that an,l < n/8.
Step 5. The following proposition, proven in the appendix, holds:

Proposition 6. Consider l such that an,l <
n
8 . In addition, assume that

0 < γ < p ≤ 1

2 + α
. (16)

Then, there exists constants c3, c4 ≥ 1 and c5 > 0, which depend only on L, such that for any

t > c
1

1−γ(2+α)

3

1

nλn
α

1−γ(2+α)
+
c4
n
, (17)

we have

P
{

sup
g∈Gl

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
>

1

2

}
≤ 120 exp

(
−c5

µ2
n,l t 2l

n

)
+ 2βan,lµn,l .

We apply this proposition to the terms of the RHS of (9) when l is such that an,l < n/8. With the
notation of the proposition, we get that under (8), (15), (16), and (17)

P {T2,n > t} ≤
∑

{l∈N0:an,l<
n
8 }

[
120 exp

(
−c5

µ2
n,l t 2l

n

)
+ 2βan,lµn,l

]

≤
∑
l∈N0

[
120 exp

(
−c5

µ2
n,l t 2l

n

)
+ 2βan,lµn,l

]
.

Fix some l ≥ 0. Our purpose now is to bound βan,lµn,l. By Assumption A1,

βan,lµn,l ≤ β̄0 exp(−β̄1an,l + logµn,l) .

Thus, whenever

logµn,l
β̄1an,l

<
1

2
(18)

holds, we will have 2βan,lµn,l ≤ 2β̄0 exp(− β̄1

2 an,l) ≤ c6 exp(− β̄1

2 a
′
n,l), where c6 = 2β̄0 exp( β̄1

2 ). Using
a′n,l ≤ 2an,l, µn,l ≤ n, and the definition of a′n,l, we can see that (18) is satisfied whenever

t >

(
4
β̄1

log n
) 1
γ

n
. (19)

Then,

P {T2,n > t} ≤
∑
l≥0

[
c7 exp

(
−c5

µ2
n,l t 2l

n

)
+ c6 exp

(
− β̄1

2
a′n,l

)]

≤
∑
l≥0

[
c7 exp

(
−c8(nt)1−2γ(2l)1−2p

)
+ c6 exp

(
− β̄1

2
(nt)γ(2l)p

)]
≤ c9 exp

(
−c8(nt)1−2γ

)
+ c10 exp

(
−c11β̄1(nt)γ

)
. (20)
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Fix some 0 < δ < 1. Inverting (20) gives that if t satisfies (8), (17) and (19) and if (15) and (16) hold as
well then

T2,n ≤
1

n

( log
(

2c10
δ

)
c11β̄1

) 1
γ

+

(
log
(

2c9
δ

)
c8

) 1
1−2γ


holds with probability 1− δ.
Step 6. Combining the results of the previous steps, we find that under (15) and (16),∫

X
|m̂n(x)−m(x)|2µ(dx) = T1,n + T2,n

≤ 2λnJ
2(m) +

c
1

1−γ(2+α)

2

nλn
α

1−γ(2+α)
+

( c3
β̄1

ln c7
δ )

1
γ

n
+

( c4
β̄1

log n)
1
γ

n
+

(c5 ln c7
δ )

1
1−2γ

n
+
c6
n

(21)

holds with probability at least 1− δ, where we redefined the values of c2, . . . , c6, c7 ≥ 1 in a suitable manner
(Note that the values of the constants c2, . . . , c6 depend still only on L, while c7 depends only on L and β̄0).

Let us assume that 0 < γ ≤ 1
3 < 1

2+α . In this range of γ, as n gets large the third term of the RHS
of (21) dominates the last two terms. Thus, we only need to deal with the first four terms. One can see
that the choice of λn which minimizes the sum of these terms (disregarding the constants) is

λn =

[
1

nJ2(m)

] 1−γ(2+α)
1−γ(2+α)+α

, (22)

which makes the sum of the first two terms proportional to

λnJ
2(m) =

[nJ2(m)]
α

1−γ(2+α)+α

n
=
e

α
1−γ(2+α)+α

B

n
,

for B = log(nJ2(m)). On the other hand, the sum of the third and fourth terms of (21) is upper bounded

by a constant multiple of eA/γ

n , where A = log( c8
β̄1

log(c7/δ ∨ n)).

To choose the value of γ, we separate two cases depending on whether α is positive or zero. First, let us
consider the case when α = 0. Then, λnJ

2(m) = 1
n . As a result, the best choice for γ in the range (0, 1

3 ] is
γ = 1

3 , since A/γ is decreasing in γ. Whenever A > 0 (i.e., log(c7/δ ∨ n) ≥ β̄1/c8), this choice makes the

dominating term of the bound to be eA/γ/n =
(
c8 log(n∨c7/δ)

β̄1

)3

/n. A suitable choice for p is p = 1
2 . Note

that c
1

1−γ(2+α)

2 = c

1

1− 2
3

2 = c32. Whenever n ≥ 210L2, the constraint (15) is satisfied. Since the loss function is
bounded, this condition can be absorbed in the constants. This finishes the proof of this case.

Consider now the case of α > 0. The choice of γ, which unconditionally minimizes

1

n

(
eA/γ + e

α
1−γ(2+α)+α

B
)

is given by the solution to A/γ = α
1−γ(2+α)+αB. Solving this for γ, we get

γ =
(1 + α)A

(2 + α)A+ αB
. (23)

We will argue below that for n large enough, the chosen value satisfies γ ≤ 1
3 (and in fact γ ≤ 1

6 ). Thus,
with this choice, the order of the terms under investigation becomes

1

n
eA/γ =

1

n
(eB)

α
1+α (eA)

2+α
1+α = J2(m)

α
1+αn−

1
1+α

(
c8
β̄1

log(n ∨ c7/δ)
) 2+α

1+α

. (24)
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Let us now show that for n large enough, we have γ ≤ 1
6 <

1
3 . Indeed, as n gets large, A = Θ(log log n)

and B = Θ(log n). Hence, γ → 0. In fact, a simple calculation gives that 1/6 ≥ γ will be satisfied as
long as n is large enough so that (6) holds. Moreover, γ > 0 when A,B > 0, which are satisfied for
n ≥ exp(β̄1/c8)∨ 1/J2(m). Note that any choice of p such that 0 < γ ≤ p ≤ 1

2+α satisfies all conditions and

only affects the constants. To satisfy (15), it is sufficient to have n ≥ 2
5(2+α)
1+α L2. Again this condition can

be absorbed in the constants. When γ ≤ 1
6 , we have 1

1−γ(2+α) ≤ 2. Thus, c
1

1−γ(2+α)

2 ≤ c22. This finishes the

proof.

5. Conclusions

Theorem 5 indicates that, disregarding a logarithmic factor, the rate of convergence of regularized least-
squares estimates with the exponential β-mixing covariates is asymptotically the same as the minimax rate
available for the i.i.d. scenario. Thus the exponential β-mixing dependence considered in this paper has little
effect on the efficiency of learning. It would be interesting to study this effect more closely. In particular, how
far is the dependence of our bound on the rate of the β-mixing coefficients from being optimal? Another
interesting issue is to design a model selection procedure with dependent inputs that achieves minimax
optimal rates, e.g., along the lines of the work of Kohler et al. [24]. For some steps towards this direction
see the papers by [26, 27]. Finally, it remains an interesting question of how much the dependence concepts
can be relaxed while retaining the optimal minimax rates available for the i.i.d. inputs.

Appendix A.

In this section we prove Proposition 6, which was used in the proof of Theorem 5. For the convenience
of the reader, we also quote Theorem 19.3 of Györfi et al. [20], which is essentially the same as Theorem 2
of Kohler [16] with some differences in constants.

Proof of Proposition 6. We verify the conditions of Theorem 4 for the choice of ε = 1
2 and η = 2lt.

(C1)–(C2): It is easy to see that these conditions are satisfied with K1 = 4L2 and K2 = 16L2 (See Györfi
et al. [20, p. 438]).
(C3): Since by assumption L2 ≥ 1, hence an,l ≥ 1 implies that 2K1an,l >

√
2an,lK2. Therefore it is enough

to verify that
√
nε
√

1− ε√η ≥ 1152K1an,l. As an,l ≤ a′n,l, it suffices to verify this condition with an,l

replaced by a′n,l. Plugging-in the definition of a′n,l, we get that (C3) is satisfied when t ≥ c′1
n for some c′1 > 0

dependent only on L.

(C4): Let us first verify |Rl|
n ≤ εη

6K1
. By construction, |Rl| < 2an,l ≤ 2a′n,l. Therefore, it suffices if

2a′n,l
n < 2lt

12K1
. Using the conditions on γ, p, we get that this is satisfied when t ≥ c′2

n with some c′2 > 0,
dependent only on L.

Let us now verify |Rl| < n
2 . By assumption, we have an,l <

n
8 and by construction we have |Rl| < 2an,l,

thus, |Rl| < n
4 .

(C5): We need to verify that for all z1, . . . , zn ∈ Z = X × R and all δ ≥ 2lt an,l
8 ,

√
µn,l ε(1− ε) δ

96
√

2 an,l (K1 ∨ 2K2)
≥
∫ √δ

ε(1−ε)δ
16an,l (K1 ∨ 2K2)

[
logN2

(
u

2an,l
, Gl, z1:n

)] 1
2

du .

Let zt = (xt, yt), xt ∈ X , yt ∈ R. It can be shown that N2(u,Gl, z1:n) ≤ N2( u
4L ,Fl, x1:n), where Fl ={

TLf ∈ F : J2(f) ≤ 2lt
λn

}
(see Györfi et al. [20, p. 438]). Noting that µn,l ≥ µ′n,l, clearly it suffices to show√
µ′n,l ε(1− ε) δ

96
√

2 an,l (K1 ∨ 2K2)
≥
∫ √δ

0

[
logN2

(
u

8Lan,l
,Fl, x1:n

)] 1
2

du . (A.1)
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Since Fl ⊂
{
f ∈ F : J2(f) ≤ 2lt

λn

}
, Assumption A2 indicates that

N2

(
u

8Lan,l
,Fl, x1:n

)
≤ C

8Lan,l

√
2lt
λn

u

2α

,

therefore the RHS of (A.1) is upper bounded by c′3a
α
n,l

(
2lt
λn

)α
2

δ
1−α
2 for some constant c′3 > 0, which depends

only on L. Now to verify (C5), it is sufficient to prove that for δ ≥ 2ltan,l
8 ,√

µ′n,lδ

an,l
≥ c′4(an,l)

α

(
2lt

λn

)α
2

δ
1−α
2 .

After some manipulation we see that this condition is satisfied whenever t ≥ c′5
a1+αn,l

µ′n,l2
lλαn

for a suitably chosen

c′5 > 0. Using a′n,l ≥ an,l, µ′n,l = n
2a′n,l

, and a′n,l = (nt)γ(2l)p, we get that it suffices to have

t ≥ c′6
[(nt)γ(2l)p]2+α

n2lλαn
⇐⇒ t ≥ c′7

1

nλ
α

1−γ(2+α)
n (2l)

1−p(2+α)
1−γ(2+α)

,

where c′7 = (c′6)
1

1−γ(2+α) and we used the assumption that γ < 1
2+α . For γ < p ≤ 1

2+α , the value of

(2l)
1−p(2+α)
1−γ(2+α) is a non-decreasing function of l, so the metric entropy condition (C5) is satisfied if

t ≥ c′7
1

nλ
α

1−γ(2+α)
n

.

By taking c3 = c′6 and c4 = c′1 ∨ c′2, all the conditions of the Theorem 4 are satisfied. Therefore,

P
{

sup
g∈Gl

E [g(Z)]− 1
n

∑n
i=1 g(Zi)

2lt+ E [g(Z)]
>

1

2

}
≤ 120 exp

(
−
µ2
n,l (2

lt)
(

1
2

)2 (
1− 2

3 ·
1
2

)
9× 32× 1152 (4L2)2 n

)
+ 2βanµn .

which we benefitted from the fact that for L ≥ 1, we have a2
n,lK

2
1 ≥ an,lK2 in addition to an,lµn,l ≤ n

2 . This
is the desired result after absorbing all constants into c5 > 0.

Lemma 7 (Theorem 19.3 of Györfi et al. [20]). Let Z,Z1, · · · , Zn be independent and identically distributed
random variables with values in Z. Let K1,K2 ≥ 1, 0 < ε < 1, η > 0, and let F be a permissible class of
functions f : Z → R with the following properties:

(A1) ‖f‖∞ ≤ K1,

(A2) E
[
f(Z)2

]
≤ K2E [f(Z)],

(A3)
√
nε
√

1− ε√η ≥ 288 max{2K1,
√

2K2},
(A4) For all z1, · · · , zn ∈ Z and all δ ≥ η/8,

√
nε(1− ε)δ

96
√

2 max{K1, 2K2}
≥
∫ √δ

ε(1−ε)δ
16max{K1,2K2}

[
logN2

(
u, {f ∈ F :

1

n

n∑
i=1

f2(zi) ≤ 16δ}, z1:n

)]1/2

du.

Then,

P

{
sup
f∈F

∣∣E [f(Z)]− 1
n

∑n
i=1 f(Zi)

∣∣
η + E [f(Z)]

> ε

}
≤ 60 exp

(
− n η ε2(1− ε)

128× 2304 max{K2
1 ,K2}

)
.
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