
Behavior Hierarchy Learning in a Behavior-based
System using Reinforcement Learning

Amir massoud Farahmand Majid Nili Ahmadabadi Babak Najar Araabi
Control and Intelligent Processing Center of Excellence, Dept. of Elect and Comp. Eng. University of Tehran

School of Cognitive Sciences, IPM, Tehran, Iran
Farahmand@ipm.ir, Mnili@ut.ac.ir, Araabi@ut.ac.ir

Abstract— Hand-design of an intelligent agent’s behaviors
and their hierarchy is a very hard task. One of the most
important steps toward creating intelligent agents is
providing them with capability to learn the required
behaviors and their architecture. Architecture learning in a
behavior-based agent with Subsumption architecture is
considered in this paper. Overall value function is
decomposed into easily calculate-able parts in order to learn
the behavior hierarchy. Using probabilistic formulations, two
different decomposition methods are discussed: storing the
estimated value of each behavior in each layer, and storing
the ordering of behaviors in the architecture. Using defined
decompositions, two appropriate credit assignment methods
are designed. Finally, the proposed methods are tested in a
multi-robot object-lifting task that results in satisfactory
performance.

Keywords- reinforcement learning, architecture learning,
credit assignment, value decomposition, subsumption
architecture.

I. INTRODUCTION

Our research long-term goal is developing general
automatic methods for designing distributed multi-agent
systems (which may be used in a robot's mind considering
each behaviors as an agent or a team of robots) using
reinforcement learning methodology �[1]. The main
challenges of this problem are learning behaviors of a robot
and learning the correct organization of these behaviors. To
solve these problems, we must devise a method to solve the
credit assignment problem and also be able to make a
balance between behavior and architecture learning. Our
previous studies reveal that it is not easy to solve credit
assignment problem in multi-agent systems unless we
assume the task or the team structure �[2]. Therefore, we
have chosen to work on Subsumption Architecture (SSA),
which can give us some credit assignment clues.

SSA has been used in many successful applications and
is one of the most well known behavior-based architectures
(�[3], �[4], and �[5]). However, designing behaviors and
arranging them in order to emerge the desired overall
behavior is not a trivial task. There has been some works
trying to remedy this problem by adding learning to the
architecture (e.g. �[6], �[7], �[8], and �[9]) but they have not
solved the problem completely and there are many
questions remained. Here, we have started working on

designing a set of methods that enable a behavior-based
agent to learn from its environment. We have divided this
task into two different parts: learning architecture of SSA
and learning its behaviors. Tangling these two problems, it
is possible to build up a complete agent.

Architecture learning means the way behaviors are
arranged in the architecture in order to maximize some
performance index that is defined by a designer. By
behavior learning, we mean learning how a behavior
should react to its input. In this paper, we focus on the first
problem: architecture learning.

In this paper we present two different methods to learn
the architecture of the agent assuming that we have suitable
behaviors to put in it. The proposed methods will be
presented in Section II. After that in Section III, we will
test our ideas in a multi-agent object lifting task and show
the effectiveness of our methods. Conclusions will be made
in Section IV.

II. PROPOSED METHODS

A. Problem Formulation

Suppose that we have a set of n behaviors iB , defined
as follow

SS

ASB

i

ii

⊂
=→ n1,...,i :

 (1)

where iS is a subset of the state space observable by iB

and A is its outputted action. Each iS may have some

intersection with each other. State space S can be
regarded as a space containing sensory information and
also internal states of the agent. If ii Ss ∈ , the behavior

will activate and outputs)(iii sBa = , else it will do
nothing. It is apparent that in this formulation, all behaviors
have a similar type of output but their inputs are not
necessarily the same. For instance, consider a set of
behaviors that must control moving direction of a robot.
Some behaviors process sonar information, some use

vision-based data and some other use tactile sensors, but all
of them would suggest a common direction.

Now we want to arrange these behaviors in an
architecture in order to maximize the performance of the
system. There are many different possible arrangements for
behaviors in architecture, but here we will study one
special case that we call it purely parallel Subsumption
Architecture (PPSSA) (see Fig. 1). In a PPSSA, all of the
behaviors are parallel and a higher behavior has a priority
to suppress the lower one. What we want to do is finding a
m -dimensional sequence of behaviors out of n possible
ones that maximizes the performance of the agent. More
formally, we define T as a sequence of behaviors in the
architecture as

 n mm)) ... ind() ind(ind(T ≤=]21[T (2)

 layer) iin is B indicates(that th
jind(i): j (3)

in which each layer is defined as those places that a
behavior can be placed. Assigning nm = means that we
want to use all of our behaviors in the structure, but

nm < means that we want to use only a fraction of our
behavior repertoire. It is plausible, as in a design problem
we may have more than necessary behaviors in our
toolbox. As a notational convenience, we assume that

)1(T is the highest behavior in the architecture and)(mT
is the lowest one.

Until now, we have used performance many times
without indicating what it means. We use performance here
as an objective optimality criterion that should be
maximized. Regarding reinforcement learning notion, this
criterion is a function of received rewards and punishments
through time. Having tr as a reinforcement signal received

at time t , the value of the total system (represented by T)
is

 []T structure agent with thetT rEV = . (4)

What must be done is maximizing this value by finding
an appropriate T which is consisted of iB s

 TVT maxarg* = . (5)

Now we should find a valid sequence T which
satisfies (5). To devise a method for doing so, we can
divide the problem to the following sub-problems:

• Representation: How should the agent
represent knowledge gathered by
reinforcement signal?

• Hierarchical Credit assignment: How should
the agent assign credit to different behaviors in
its architecture?

• Learning: How should the agent update its
knowledge when it receives reinforcement
signals?

First, the agent must have a kind of data structure that
stores necessary information gathered during learning. A
very simple method is storing the estimated expectation
(empirical mean) of reinforcement signal of every possible
sequence. Suppose that the behavior repertoire has n
behaviors and we want to make an architecture with m

behaviors. So we need mn different storage places to store
estimations (in this representation, behaviors may be
replicated). It is evident that this is a very big
representation space that increases learning time
considerably. In addition, there is no relation between two
different sequences, so it is not possible to use information
gathered by a particular architecture to estimate the value
of the others – although they may be similar. Beside that, it
is desirable to have representation that is complete and be
able to express every possible sequence ordering.
Summarizing, a representation must be complete, has small
representation space and use good amount of information
gathered during learning.

Suppose having a good capable representation with
previously mentioned features, it is possible to make a

sequence []TmBBBT ... 211 = (assuming that there is
some knowledge stored in it which let us make an
architecture with it) and using it, defining a SSA and run
the agent with it. While being in the environment, the agent
receives a reinforcement signal tr . Indicating which
behavioral organization is responsible for it is the problem
of hierarchical credit assignment.

The way we should update that representative data
structure knowing how the architecture should be rewarded
(or punished) is our last problem.

We propose two different representation structures and
their relevant credit assignment and learning methods.

Figure 1. A typical structure of purely parallel Subsumption
architecture

5B

4B

3B

2B

1B

st
at

es

output

B. Zero Order Representation
In this representation, we store the expected value of

each behavior in each layer. Having the previous
assumption, we can write

�
�
�

�

�
�
�

�
==

layeri in thebehavior

gcontrollin is
),(

th

j
tijZO

B
rEVjiV . (6)

What we want to do so is decomposing TV into some
parts that can be stored and updated effectively. This is the
main idea of our representations. To do so using this
representation and assuming that at least one layer becomes
active, we can write

[]
[]
[]
[] cont.) is (cont. is |

...cont.) is (cont. is |

cont.) is (cont. is |

22

11

mmt

t

t

tT

LPLrE

LPLrE

LPLrE

rEV

⋅+
+⋅+

⋅=
=

(7)

in which []cont. is | it LrE is expected reward of the

system when the thi layer takes control and
cont.) is (iLP is its probability of being controlling

layer. We can write the value part of the right-hand side
terms as

�

= �
�
�

�

�
�
�

�

=
n

j

j
tij

it

B
rELBP

LrE

1 iLin behavior

 gcontrollin is
}|{

g]controllin is |[

.... (8)

In order to find an optimum structure, we should select
a one that satisfies (5), which means

()

�
= ×

=
m

i i

iTindiiiTind

T LP

VLBP
T

1

)(,))((*

cont.) is (

}|{
maxarg (9)

In the case of greedy-like architecture selection that we
do not select any other behavior in a layer except the most
promising one, we have

�
	

=
otherwise 0

in behavior gcontrollin is 1
}|{ ij

ij

LB
LBP

 (10)

and we can write

 ()�
=

=
m

i
iiTindi

T
LPVT

1
)(,

* cont.) is (maxarg .(11)

It is evident that this representation is complete as it can
represent any possible combinations of behaviors in every
layer. The representation space is much smaller than a
complete one that stores every possible combination and is

 mn ⋅=y(ZO)cardinalit (12)

Credit assignment is not difficult in this case. The
updating way of ijV is evident from its definition: if layer

i is the controlling layer and jB has been activated in it,

we must update ijV similar to what is common in

stochastic parameter estimation, i.e.

 () nijnijijnij rVV
nn ,,1

1
αα +−=

+
 (13)

with following conditions (�[10])

finite is }var{ (IV)

 (III)

 (II)

0lim (I)

1

2
,

1
,

,

n

n
ijn

n
ijn

ijnn

r

a

�

�
∞

=

∞

=

∞→

∞<

∞=

=

α

α
 (14)

C. First Order Representation
Here, we propose another method that uses relative

position of behaviors in architecture instead of their
absolute position as in the previous one. This
representation is complete and has much smaller
representation space than a one that stores all of the
possible sequences. In this representation, we want to store
order of behaviors. We define ‘ > ’ inequality operator as

TBj

T

i
j

BB
∈

>
,Bji

i

B upper than is B: . (15)

As in the previous case, we want to find the basic
elements to decompose the value of the system into it.
Defining the value of an ordering as

�
�
�

�

�
�
�

�
=

=> >

behavior activenext theis

 g,controllin is

)(

j

i
t

jijiFO

B

B
rE

VBBV

. (16)

it is easy to write TV (4) as

 []�
=

==
m

i
iiindttT LPBrErEV

1
)(cont.) is (cont. is |][

 (17)

which each value part of the right-hand side terms can be
expanded into

[]
[]

�

�

>+=
�
�
�

�

�
�
�

�
+

=

j
jii

j j

i
t

it

it

VV

B

B
rE

BrE

BrE

0

behavior activenext theis

& gcontrollin is

active is elsenobody & gcontrollin is

gcontrollin is |

 (18)

where

 �
�

�
�
�

�
=

active is elsenobody

 & gcontrollin is
0

i
ti

B
rEV . (19)

It can be seen that these events are mutually exclusive
as

�
	

≠
=

=

�
�

�
	

k j

k j

B

B
P

k

j

0
1

behavior) activenext theis (

 & behavior) activenext theis (

(20)

 0
activated) isbehavior other (no

& behavior) activenext theis (
=

�
�

�
	

 jB

P .(21)

Assuming that at least one of the behaviors becomes
active, we can write the value of the total system as

 � �
= +=

>
�
�

�
	

+=
m

i
i

mTind

iTindj
jiiT LPVVV

1

))((

))1((
0 cont.) is (.(22)

To find the best structure, we must find the one that
maximizes (22).

In order to assign credit in this representation, we
should observe activation pattern of behaviors in the
architecture. If only one behavior becomes activated, we
must update 0iV . If two or more behaviors become active,

we must update jiV > for i which is a controlling behavior

and j which is the next active behavior. Updating rules
are

 () niniini rVV
nn 0,00,0 1

1
αα +−=

+
 (23)

()

behavior activenext theis and

; 1 ,,1

jBB

rVV

ji

njinjijinji nn

>

+−= >>>> +
αα

(24)

with conditions similar to (14). At last, cardinality of this
representation space is rather small and is

 2)(nFOycardinalit = . (25)

III. EXPERIMENTS
Here we consider the object lifting task as our test bed

�[11]. Imagine a situation in which a group of robots must
lift up a bulky and large object (Fig. 2). The object is of
such a size and shape that none of the robots can grasp it
directly. Then, a fork lifting mechanism is probably the
most suitable for handling the object. When lifting the
object, based on the relative position of each robot to the
object's center of gravity (c.g.), the required force to lift the
object may vary from one robot to another, which
introduces heterogeneity in the robot team. Consequently,
each individual robot must have the ability to do its job
under a range of external loads. In addition, when the
object is tilting, each robot must move to prevent sliding at
its contact point with the object. If some compliance is
provided at the end effector (in the plane parallel to the
object's lower surface) and the tilt angle of the object is
kept small enough, there is no need for the robot to move
while lifting the object. Keeping the inclination angle of
the object within a specified range, will also prevent
collision between the object and the lifting robots.

To keep the object stable when lifting or moving fast on
a rough or curved path, the object configuration must be
such that the Zero Moment Point (ZMP) remains in the
closed area having the object/robot contact points as its
vertices. Considering the object's maximum acceleration
and possible position of its c.g., one can find the object’s
angle at the point when the ZMP comes to the border of the

Figure 2. A group of robots lift a bulky object (note that there are four
robots in this figure but we have used three robots in our simulations

supporting area. If the robots keep the object’s angle in the
range obtained from the above estimation, the object will
be stable. Therefore, if the tilt angle of the object is
maintained within a specified value, then the robots are not
required to move, the object will not hit the robots, and the
system is stable. Moreover, it has been assumed that each
robot is capable of measuring the object's angle in its own
coordinate system which can be estimated by each robot.

In �[11], a SSA system that can lift an object with
unknown mass and center of gravity cooperatively with no
central control or communication between agents is hand-
designed. Here we try to learn the architecture they
developed.

Without going into details, we state that the problem is
lifting an unknown object to a set point while keeping its
tilt angle small. Here, we make a behavior repertoire
similar to those that they used and let our methods learn the
correct structure. Defining)(kz as height of robot-object

contact point,)(kv as its elevation velocity, and)(kτ as

the object’s tilt angle at time step k (all of these quantities
can be measured locally), the behaviors are defined and
programmed as follow

Push more: vkvkv ∆+=+)()1((26)

Do not go fast: if max)(vkv > then max)(vkv = else do
nothing (27)

Stop at goal: if goalzkz ≥)(then stop (0)1(=+kv)

 (28)

Hurry up: if 0ττ > and the robot is the lowest one then

),)(max()(maxvvkvkv ∆+= (29)

Slow down: if 0ττ > and the robot is the highest one

then)0,)(max()(vkvkv ∆−= (30)

The results in this paper is obtained using 1=∆v ,

5max =v , 3=goalz , and �50 =τ .

We have used our methods in two different problems.
One of them is a synthetic abstract one which is defined
specially to check the validity of our method. We will not
go into its details and results obtained from it, and postpone
it to another paper, instead we test our methods for this
object lifting task to see whether they are practical in a real
situation or not. The main difference between these two
problems is that reinforcement signal cannot be easily
defined in the latter one. For real situations, one must
design a suitable reinforcement function that reflects all the
necessary properties of the learnt system. We have
designed the following reinforcement function, which
seems to be a good candidate for this problem. We have
not optimized them, so it is possible to find a better one.

�
	

−
−<−+

=
otherwise 1.0

5.0)()1(1
)(

ktk
kr

τ
 (31)

�
�

�
	

−

<
+=

otherwise 1.0

1

)()(
0

k

��(k)
kkrkr (32)

�
	

−

<−
+=

otherwise 1.0

5.0|)(| 1
)()(goalzkz

krkr (33)

 zkrkr δ+>−= goalzz(k) 1)()((34)

 maxv) v(k1.0)()(>−= krkr (35)

In order to clarify this function, let us discuss it briefly.
(31) rewards reducing tilt angle and punish a movement
that increases it, (32) rewards being in small tilt angle and
punish its largeness. Note that it rewards low tilt angle in
early times more than in later time and punishes high
angles in the later times more than in the beginning in order
to enforce converging to a satisfactory angle sooner. (33)
rewards being near the goal and punishes being far from it
and (34) punishes passing the goal. zδ has been selected
0.2 for simulations of zero order method and 0.05 for first
order method. And at last, (35) punishes a behavior that
make a system move too fast.

For our simulations, we have averaged 100 runs of
learning system each of which is trying 50 different
episodes that are consisted of setting a random initial
position for the object and make decision using the
proposed architecture and updating value tables regarding
reinforcement signal that is received. Learning rate was set

1.00 =α and was reduced using

 episode
episodea)99.0(0α= (36)

Figure 3. Comparison of zero order and first order methods with a
hand-designed one.

5 10 15 20 25 30 35 40 45 50

-40

-30

-20

-10

0

10

20

30

40

Episodes

A
ve

ra
ge

 t
ot

al
 r

ew
ar

d
pe

r
ep

is
od

e

Mean hand-designed performance

 Zero order

First order

We have added exploration capability for architecture
making process. We have done it by doing a random
change in optimal architecture. The time step in our
simulations was sT 01.0=∆ . In Fig. 3 average
performance of two different methods and a hand-designed
one (which is the same as what has been reported in �[11])
is compared. As can be seen, the performance is somehow
lower than a hand-designed one but is rather satisfactory.
Note that large amount of this difference is due to
exploration we have made in architecture building process
that may not select optimum architecture in order to find
other possible good solutions. Beside that, our methods
have found an architecture similar to the hand-designed
one most of the times. The graphs show that both methods
converge to the same results but first order method acts
better in the first stages of learning.

In Fig. 4 and Fig. 5, elevations of three robots and
object tilt angle when lifting the object are depicted. In this
simulation, the robots implement the architecture learnt
using zero order method. The figures show that the team
has learned lifting the object without tilting it beyond the
defined tilt angle in a distributed manner.

IV. CONCLUSIONS
We have proposed two different methods for behavior

hierarchy learning in a purely parallel subsumption system
using constructive methods. In these methods,
representation and credit assignment are obtained together
using a mathematical formulation. Simulations on
distributed object lifting task by three robots show that
these two methods act satisfactory and it seems that
architecture learning is possible if a proper credit
assignment function is designed.

Important directions for our future research include
learning behaviors and architecture together and also
architecture or behavior learning in other hierarchical
architectures (Feudal Q-learning �[12], Options �[13], MaxQ
�[14] and Hierarchies of Abstract Machines �[15]).

REFERENCES
[1] L. P. Kaelbling and M. L. Littman, and A. W. Moore,

“Reinforcement learning: a survey,” Journal of Artificial
Intelligence Research, 4:237-285, 1996.

[2] A. Harati and M. Nili Ahmadabadi, "Experimental analysis for
knowledge based multiagent credit assignment," Neural
Information Processing: Research and Development, Rajapakse,
Jagath C.; Wang, Lipo (Eds.), Springer-Verlog, May 2004.

[3] R. A. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal of Robotics and Automation R.A-2, pp. 14-
23, 1986.

[4] R. A. Brooks, “New approaches to robotics,” Science 253, pp.
1227-1232, 1991.

[5] R. Brooks, “Intelligent without reason,” in Proc. Int. Joint Conf. AI,
pp. 569-595, 1991.

[6] P. Maes and R. A. Brooks, “Learning to coordinate behaviors,” in
Proc. AAAI-90, pp. 796-802, 1990.

[7] S. Mahadevan and J. Connell, “Scaling reinforcement learning to
robotics by exploiting the subsumption architecture,” in 8th Int.
Workshop on Machine Learning, Morgan Kaufmann, pp. 328-337,
1991.

[8] M. J. Mataric, “Reward function for accelerated learning,” in W.
W. Cohen & H. Hirsh, eds., Proc. 8th Int. Conf. Machine Learning,
Morgan Kaufmann, pp. 181-189, 1994.

[9] M. J. Mataric, “Learning in behavior-based multi-robot systems:
policies, models, and other agents,” Cognitive System Research,
special issue on Multi-disciplinary studies of multi-agent learning,
Ron Sun, ed., 2(1), pp. 81-93, 2001.

[10] T. Jaakkola, M. I. Jordan, and S. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural
Computation, 6(6): 1185-1201, 1994.

[11] M. Nili Ahmadabadi and Eiji Nakano, “A Constrain and move
approach to distributed object Manipulation,” IEEE Tran. On
Robotics and Automation, vol. 17, no. 2, pp. 157-172, 2001.

[12] P. Dayan and G. Hinton, “Feudal reinforcement learning,” in
Advances in Neural Information Processing Systems, 5, pp. 271-
278, Morgan Kaufmann, 1993.

[13] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-
MDPs: a framework for temporal abstraction in reinforcement
learning,” Artificial Intelligence, 112:181-221, 1999.

[14] T. G. Dietterich, “Hierarchical reinforcement learning with the
MaxQ value function decomposition,” Journal of Artificial
Intelligence Research, 13: 227-303, 2000.

[15] R. Parr and S. Russell, “Reinforcement learning with hierarchies of
machines,” In Advances in Neural Information Processing Systems:
Proceedings of the 1997 Conference, 1998.

Figure 5. A sample simulation result showing the tilt angle of three robots
during object lifting after sufficient learning (the architecture of the learned

agent is the same as a hand-designed one).

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

Steps

Ti
lt

an
gl

e
(in

 d
eg

re
es

)

Figure 4. A sample simulation result showing the position of three robots
during object lifting after sufficient learning (the architecture of the

learned agent is the same as a hand-designed one).

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

Steps

z
of

 r
ob

ot
s

goal

1

2
3

