
Behavior Hierarchy Learning in a Behavior-based 
System using Reinforcement Learning 

Amir massoud Farahmand               Majid Nili Ahmadabadi               Babak Najar Araabi 
Control and Intelligent Processing Center of Excellence, Dept. of  Elect and Comp. Eng. University of Tehran 

School of Cognitive Sciences, IPM, Tehran, Iran 
Farahmand@ipm.ir, Mnili@ut.ac.ir, Araabi@ut.ac.ir

 
 

Abstract— Hand-design of an intelligent agent’s behaviors 
and their hierarchy is a very hard task. One of the most 
important steps toward creating intelligent agents is 
providing them with capability to learn the required 
behaviors and their architecture. Architecture learning in a 
behavior-based agent with Subsumption architecture is 
considered in this paper. Overall value function is 
decomposed into easily calculate-able parts in order to learn 
the behavior hierarchy. Using probabilistic formulations, two 
different decomposition methods are discussed:  storing the 
estimated value of each behavior in each layer, and storing 
the ordering of behaviors in the architecture. Using defined 
decompositions, two appropriate credit assignment methods 
are designed. Finally, the proposed methods are tested in a 
multi-robot object-lifting task that results in satisfactory 
performance. 

Keywords- reinforcement learning, architecture learning, 
credit assignment, value decomposition, subsumption 
architecture. 

I.  INTRODUCTION 

Our research long-term goal is developing general 
automatic methods for designing distributed multi-agent 
systems (which may be used in a robot's mind considering 
each behaviors as an agent or a team of robots) using 
reinforcement learning methodology �[1]. The main 
challenges of this problem are learning behaviors of a robot 
and learning the correct organization of these behaviors. To 
solve these problems, we must devise a method to solve the 
credit assignment problem and also be able to make a 
balance between behavior and architecture learning. Our 
previous studies reveal that it is not easy to solve credit 
assignment problem in multi-agent systems unless we 
assume the task or the team structure �[2]. Therefore, we 
have chosen to work on Subsumption Architecture (SSA), 
which can give us some credit assignment clues.  

SSA has been used in many successful applications and 
is one of the most well known behavior-based architectures 
(�[3], �[4], and �[5]). However, designing behaviors and 
arranging them in order to emerge the desired overall 
behavior is not a trivial task. There has been some works 
trying to remedy this problem by adding learning to the 
architecture (e.g. �[6], �[7], �[8], and �[9]) but they have not 
solved the problem completely and there are many 
questions remained. Here, we have started working on 

designing a set of methods that enable a behavior-based 
agent to learn from its environment. We have divided this 
task into two different parts: learning architecture of SSA 
and learning its behaviors. Tangling these two problems, it 
is possible to build up a complete agent.  

Architecture learning means the way behaviors are 
arranged in the architecture in order to maximize some 
performance index that is defined by a designer. By 
behavior learning, we mean learning how a behavior 
should react to its input. In this paper, we focus on the first 
problem: architecture learning. 

In this paper we present two different methods to learn 
the architecture of the agent assuming that we have suitable 
behaviors to put in it. The proposed methods will be 
presented in Section II. After that in Section III, we will 
test our ideas in a multi-agent object lifting task and show 
the effectiveness of our methods. Conclusions will be made 
in Section IV. 

II. PROPOSED METHODS 

A. Problem Formulation 

Suppose that we have a set of n  behaviors iB , defined 
as follow 
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where iS  is a subset of the state space observable by iB  

and A  is its outputted action. Each iS  may have some 

intersection with each other. State space S  can be 
regarded as a space containing sensory information and 
also internal states of the agent. If ii Ss ∈ , the behavior 

will activate and outputs )( iii sBa = , else it will do 
nothing. It is apparent that in this formulation, all behaviors 
have a similar type of output but their inputs are not 
necessarily the same. For instance, consider a set of 
behaviors that must control moving direction of a robot. 
Some behaviors process sonar information, some use 



vision-based data and some other use tactile sensors, but all 
of them would suggest a common direction. 

Now we want to arrange these behaviors in an 
architecture in order to maximize the performance of the 
system. There are many different possible arrangements for 
behaviors in architecture, but here we will study one 
special case that we call it purely parallel Subsumption 
Architecture (PPSSA) (see Fig. 1). In a PPSSA, all of the 
behaviors are parallel and a higher behavior has a priority 
to suppress the lower one. What we want to do is finding a 
m -dimensional sequence of behaviors out of n  possible 
ones that maximizes the performance of the agent. More 
formally, we define T as a sequence of behaviors in the 
architecture as 

 n mm)) ... ind() ind(ind(T ≤=    ]21[ T  (2) 

 layer) iin  is B indicates(that    th
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in which each layer is defined as those places that a 
behavior can be placed. Assigning nm =  means that we 
want to use all of our behaviors in the structure, but 

nm <  means that we want to use only a fraction of our 
behavior repertoire. It is plausible, as in a design problem 
we may have more than necessary behaviors in our 
toolbox. As a notational convenience, we assume that 

)1(T  is the highest behavior in the architecture and )(mT  
is the lowest one.  

Until now, we have used performance many times 
without indicating what it means. We use performance here 
as an objective optimality criterion that should be 
maximized. Regarding reinforcement learning notion, this 
criterion is a function of received rewards and punishments 
through time. Having tr  as a reinforcement signal received 

at time t , the value of the total system (represented by T ) 
is  

 [ ]T structure agent with thetT rEV = . (4) 

What must be done is maximizing this value by finding 
an appropriate T  which is consisted of iB s 

 TVT maxarg* = . (5) 

Now we should find a valid sequence T  which 
satisfies (5). To devise a method for doing so, we can 
divide the problem to the following sub-problems: 

• Representation: How should the agent 
represent knowledge gathered by 
reinforcement signal? 

• Hierarchical Credit assignment: How should 
the agent assign credit to different behaviors in 
its architecture? 

• Learning: How should the agent update its 
knowledge when it receives reinforcement 
signals? 

First, the agent must have a kind of data structure that 
stores necessary information gathered during learning. A 
very simple method is storing the estimated expectation 
(empirical mean) of reinforcement signal of every possible 
sequence. Suppose that the behavior repertoire has n  
behaviors and we want to make an architecture with m  

behaviors. So we need mn  different storage places to store 
estimations (in this representation, behaviors may be 
replicated). It is evident that this is a very big 
representation space that increases learning time 
considerably. In addition, there is no relation between two 
different sequences, so it is not possible to use information 
gathered by a particular architecture to estimate the value 
of the others – although they may be similar. Beside that, it 
is desirable to have representation that is complete and be 
able to express every possible sequence ordering. 
Summarizing, a representation must be complete, has small 
representation space and use good amount of information 
gathered during learning. 

Suppose having a good capable representation with 
previously mentioned features, it is possible to make a 

sequence [ ]TmBBBT  ...  211 =  (assuming that there is 
some knowledge stored in it which let us make an 
architecture with it) and using it, defining a SSA and run 
the agent with it. While being in the environment, the agent 
receives a reinforcement signal tr . Indicating which 
behavioral organization is responsible for it is the problem 
of hierarchical credit assignment. 

The way we should update that representative data 
structure knowing how the architecture should be rewarded 
(or punished) is our last problem. 

We propose two different representation structures and 
their relevant credit assignment and learning methods. 

Figure 1.    A typical structure of purely parallel Subsumption 
architecture 
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B. Zero Order Representation 
In this representation, we store the expected value of 

each behavior in each layer. Having the previous 
assumption, we can write 
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What we want to do so is decomposing TV  into some 
parts that can be stored and updated effectively. This is the 
main idea of our representations. To do so using this 
representation and assuming that at least one layer becomes 
active, we can write  
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in which [ ]cont. is | it LrE  is expected reward of the 

system when the thi  layer takes control and 
cont.) is ( iLP  is its probability of being controlling 

layer. We can write the value part of the right-hand side 
terms as 
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In order to find an optimum structure, we should select 
a one that satisfies (5), which means 
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In the case of greedy-like architecture selection that we 
do not select any other behavior in a layer except the most 
promising one, we have 

�
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and we can write  
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It is evident that this representation is complete as it can 
represent any possible combinations of behaviors in every 
layer. The representation space is much smaller than a 
complete one that stores every possible combination and is 

 mn ⋅=y(ZO)cardinalit ....        (12)    

Credit assignment is not difficult in this case. The 
updating way of ijV  is evident from its definition: if layer 

i  is the controlling layer and jB  has been activated in it, 

we must update ijV  similar to what is common in 

stochastic parameter estimation, i.e. 

 ( ) nijnijijnij rVV
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with following conditions (�[10]) 
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C. First Order Representation 
Here, we propose another method that uses relative 

position of behaviors in architecture instead of their 
absolute position as in the previous one. This 
representation is complete and has much smaller 
representation space than a one that stores all of the 
possible sequences. In this representation, we want to store 
order of behaviors. We define ‘ > ’ inequality operator as 

 
TBj

T

i
j

BB
∈

>
,Bji

i

B upper than is B: . (15)  

As in the previous case, we want to find the basic 
elements to decompose the value of the system into it. 
Defining the value of an ordering as  

 

�
�
�

�

�
�
�

�
=

=> >

behavior activenext   theis 

 g,controllin is 

)(

j

i
t

jijiFO

B

B
rE

VBBV

. (16) 



it is easy to write TV  (4) as 
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which each value part of the right-hand side terms can be 
expanded into 
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where 
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It can be seen that these events are mutually exclusive 
as  

 

�
	



≠
=

=

�
�


�
	



k    j

k     j

B

B
P

k

j

0
1

behavior) activenext   theis (

 & behavior) activenext   theis (

(20) 

 0
activated) isbehavior other  (no 

& behavior) activenext   theis (
=

�
�


�
	

 jB

P .(21) 

Assuming that at least one of the behaviors becomes 
active, we can write the value of the total system as  
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To find the best structure, we must find the one that 
maximizes (22). 

In order to assign credit in this representation, we 
should observe activation pattern of behaviors in the 
architecture. If only one behavior becomes activated, we 
must update 0iV . If two or more behaviors become active, 

we must update jiV >  for i  which is a controlling behavior 

and j  which is the next active behavior. Updating rules 
are  
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with conditions similar to (14). At last, cardinality of this 
representation space is rather small and is 

 2)( nFOycardinalit = . (25) 

III. EXPERIMENTS 
Here we consider the object lifting task as our test bed 

�[11]. Imagine a situation in which a group of robots must 
lift up a bulky and large object (Fig. 2). The object is of 
such a size and shape that none of the robots can grasp it 
directly. Then, a fork lifting mechanism is probably the 
most suitable for handling the object. When lifting the 
object, based on the relative position of each robot to the 
object's center of gravity (c.g.), the required force to lift the 
object may vary from one robot to another, which 
introduces heterogeneity in the robot team. Consequently, 
each individual robot must have the ability to do its job 
under a range of external loads. In addition, when the 
object is tilting, each robot must move to prevent sliding at 
its contact point with the object. If some compliance is 
provided at the end effector (in the plane parallel to the 
object's lower surface) and the tilt angle of the object is 
kept small enough, there is no need for the robot to move 
while lifting the object. Keeping the inclination angle of 
the object within a specified range, will also prevent 
collision between the object and the lifting robots. 

To keep the object stable when lifting or moving fast on 
a rough or curved path, the object configuration must be 
such that the Zero Moment Point (ZMP) remains in the 
closed area having the object/robot contact points as its 
vertices. Considering the object's maximum acceleration 
and possible position of its c.g., one can find the object’s 
angle at the point when the ZMP comes to the border of the 

Figure 2.  A group of robots lift a bulky object (note that there are four 
robots in this figure but we have used three robots in our simulations 



supporting area. If the robots keep the object’s angle in the 
range obtained from the above estimation, the object will 
be stable. Therefore, if the tilt angle of the object is 
maintained within a specified value, then the robots are not 
required to move, the object will not hit the robots, and the 
system is stable. Moreover, it has been assumed that each 
robot is capable of measuring the object's angle in its own 
coordinate system which can be estimated by each robot.  

In �[11], a SSA system that can lift an object with 
unknown mass and center of gravity cooperatively with no 
central control or communication between agents is hand-
designed. Here we try to learn the architecture they 
developed.  

Without going into details, we state that the problem is 
lifting an unknown object to a set point while keeping its 
tilt angle small. Here, we make a behavior repertoire 
similar to those that they used and let our methods learn the 
correct structure. Defining )(kz  as height of robot-object 

contact point, )(kv  as its elevation velocity, and )(kτ  as 

the object’s tilt angle at time step k  (all of these quantities 
can be measured locally), the behaviors are defined and 
programmed as follow 

Push more: vkvkv ∆+=+ )()1(  (26) 

Do not go fast: if max)( vkv >  then max)( vkv =  else do 
nothing (27) 

Stop at goal: if goalzkz ≥)(  then stop ( 0)1( =+kv )

 (28) 

Hurry up: if 0ττ >  and the robot is the lowest one then 

),)(max()( maxvvkvkv ∆+=  (29) 

Slow down: if 0ττ >  and the robot is the highest one 

then )0,)(max()( vkvkv ∆−=  (30) 

The results in this paper is obtained using 1=∆v , 

5max =v , 3=goalz , and �50 =τ .  

We have used our methods in two different problems. 
One of them is a synthetic abstract one which is defined 
specially to check the validity of our method. We will not 
go into its details and results obtained from it, and postpone 
it to another paper, instead we test our methods for this 
object lifting task to see whether they are practical in a real 
situation or not. The main difference between these two 
problems is that reinforcement signal cannot be easily 
defined in the latter one. For real situations, one must 
design a suitable reinforcement function that reflects all the 
necessary properties of the learnt system. We have 
designed the following reinforcement function, which 
seems to be a good candidate for this problem. We have 
not optimized them, so it is possible to find a better one. 
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In order to clarify this function, let us discuss it briefly. 
(31) rewards reducing tilt angle and punish a movement 
that increases it, (32) rewards being in small tilt angle and 
punish its largeness. Note that it rewards low tilt angle in 
early times more than in later time and punishes high 
angles in the later times more than in the beginning in order 
to enforce converging to a satisfactory angle sooner. (33) 
rewards being near the goal and punishes being far from it 
and (34) punishes passing the goal. zδ  has been selected 
0.2 for simulations of zero order method and 0.05 for first 
order method. And at last, (35) punishes a behavior that 
make a system move too fast. 

For our simulations, we have averaged 100 runs of 
learning system each of which is trying 50 different 
episodes that are consisted of setting a random initial 
position for the object and make decision using the 
proposed architecture and updating value tables regarding 
reinforcement signal that is received. Learning rate was set 

1.00 =α  and was reduced using 

 episode
episodea )99.0(0α=  (36) 

Figure 3. Comparison of zero order and first order methods with a 
hand-designed one. 
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We have added exploration capability for architecture 
making process. We have done it by doing a random 
change in optimal architecture. The time step in our 
simulations was sT 01.0=∆ . In Fig. 3 average 
performance of two different methods and a hand-designed 
one (which is the same as what has been reported in �[11]) 
is compared. As can be seen, the performance is somehow 
lower than a hand-designed one but is rather satisfactory. 
Note that large amount of this difference is due to 
exploration we have made in architecture building process 
that may not select optimum architecture in order to find 
other possible good solutions. Beside that, our methods 
have found an architecture similar to the hand-designed 
one most of the times. The graphs show that both methods 
converge to the same results but first order method acts 
better in the first stages of learning.  

In Fig. 4 and Fig. 5, elevations of three robots and 
object tilt angle when lifting the object are depicted. In this 
simulation, the robots implement the architecture learnt 
using zero order method. The figures show that the team 
has learned lifting the object without tilting it beyond the 
defined tilt angle in a distributed manner.  

IV. CONCLUSIONS 
We have proposed two different methods for behavior 

hierarchy learning in a purely parallel subsumption system 
using constructive methods. In these methods, 
representation and credit assignment are obtained together 
using a mathematical formulation. Simulations on 
distributed object lifting task by three robots show that 
these two methods act satisfactory and it seems that 
architecture learning is possible if a proper credit 
assignment function is designed.  

Important directions for our future research include 
learning behaviors and architecture together and also 
architecture or behavior learning in other hierarchical 
architectures (Feudal Q-learning �[12], Options �[13], MaxQ 
�[14] and Hierarchies of Abstract Machines �[15]).  
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Figure 5. A sample simulation result showing the tilt angle of three robots 
during object lifting after sufficient learning (the architecture of the learned 

agent is the same as a hand-designed one). 
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Figure 4.  A sample simulation result showing the position of three robots 
during object lifting after sufficient learning (the architecture of the 

learned agent is the same as a hand-designed one). 
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