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Abstract

We propose a new class of computationally fast algo-
rithms to find close to optimal policy for Markov Deci-
sion Processes (MDP) with large finite horizon T . The
main idea is that instead of planning until the time hori-
zon T , we plan only up to a truncated horizon H � T
and use an estimate of the true optimal value function as
the terminal value. Our approach of finding the terminal
value function is to learn a mapping from an MDP to its
value function by solving many similar MDPs during a
training phase and fit a regression estimator. We analyze
the method by providing an error propagation theorem
that shows the effect of various sources of errors to the
quality of the solution. We also empirically validate this
approach in a real-world application of designing an en-
ergy management system for Hybrid Electric Vehicles
with promising results.

1 Introduction
We consider the problem of finding a close to optimal policy
for Markov Decision Processes (MDP) with a finite hori-
zon T . The usual approach to solve the finite-horizon prob-
lems is by a Dynamic Programming (DP) procedure that
starts from time t = T and computes the optimal value
function by backward induction towards time t = 1. This
simple Value Iteration procedure faces two possible compu-
tational challenges. The first is that for a large state space
X , each iteration of DP becomes expensive or even infea-
sible. For finite X , the computation time is O(|X |2). A
discretization-based approach to deal with continuous X
leads to impractical computation times, e.g., if X is a com-
pact subset of Rd, discretization at the ε-resolution leads
to O(ε−d) states, which quickly becomes very large as d
grows. To address this curse of dimensionality, we may use
a function approximator to provide a more compact ap-
proximate representation of the value function. This idea,
which is sometimes called Approximate Dynamic Program-
ming (ADP), has been studied in the reinforcement learning
(RL), control engineering, and operations research commu-
nities (Bertsekas and Tsitsiklis 1996; Buşoniu et al. 2010;
Szepesvári 2010; Powell 2011). More closely related to this
work, but in the context of discounted MDPs, the use of
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function approximation in the form of Approximate Value
Iteration and its variants has been studied, both empirically
and theoretically, by (Ernst, Geurts, and Wehenkel 2005;
Riedmiller 2005; Munos and Szepesvári 2008; Farahmand
et al. 2009; Farahmand and Precup 2012; Mnih et al. 2015).
For finite horizon MDPs, this idea has been theoretically
studied by (Murphy 2005).

The second computational challenge is due to the time
horizon T . Even though the computational cost is linear in
T , this might still be a bottleneck if the problem has a large
T . Similarly in the discounted case, the appearance of dis-
count factor γ in performance bounds can be seen as de-
termining the effective time horizon, which grows fast as γ
approaches 1 (Scherrer and Lesner 2012).

The computational consequence of the time horizon might
be a concern for real-time applications of finite-horizon
MDPs where the available computational power is limited.
For instance, our motivating application is the design of
an energy management system for Hybrid Electric Vehicles
(HEV), for which one should decide when to use the elec-
tric motor and when to use the internal combustion engine
based on the state of the car and the route ahead in order
to minimize the total fuel and electricity cost. This problem
is commonly formulated as a finite-horizon MDP (Sciarretta
and Guzzella 2007), in which the length of the route and
the resolution of the decision points determine the appro-
priate horizon. Nonetheless, due to the computational limit
of the usual onboard computers, solving the problem with a
time horizon in the order of hundreds or thousands might be
impractical. We shall return to this application later in the
paper.

To address the large time horizon T , one may perform DP
(or ADP for large state spaces) only for H � T time steps
and use a certain terminal value for the truncated procedure.
One possibility for the choice of the new terminal value is
to simply use a zero function. This indeed reduces the com-
putational cost from O(T ) to O(H), but it may lead to poor
solutions, e.g., Example 6.5.1 of (Bertsekas 2000). Another
possibility is to use the value function of some base policy
as in the rollout algorithm, see e.g., (Bertsekas 2005) or Sec-
tion 6.4 of (Bertsekas 2000). In that case one can show that
the obtained policy is not worse than the base policy. One
may also have an access to a domain expert’s handcrafted
heuristics that provides a good estimate for the truncated ter-



minal value, or learn the terminal value from the behaviour
of an expert solving the MDP (Maddison et al. 2015), or
learn it through a separate reinforcement learning process.
Refer to (Gelly and Silver 2011) for a survey on several of
these approaches in the context of computer Go, especially
when used alongside Monte Carlo tree search. Note that the
goal of all these approaches is to provide a sufficiently ac-
curate estimate of the optimal value function as the terminal
value at H time steps ahead. If a good estimate is known,
the truncation does not lead to bad policies. Providing an
estimate of the optimal value function to be used as the ter-
minal value function is the direction that we pursue in this
work.

We consider the scenario that we want to solve a problem
belonging to a parameterized class of MDPs, in which the
parameter describes the transition probability kernel and/or
the reward function of the MDP, i.e., the task. Parameterized
MDPs are natural way of thinking about sequential decision-
making problems for which an agent has to solve a variety of
similar tasks. Some examples are a robot manipulator that is
given different targets in its workspace at each run, a soccer
playing agent that learns a kicking policy based on the target
location for the ball, and an HVAC system that controls the
temperature based on the building parameters. Our approach
is that in the training phase, we solve several instances of
these MDPs by applying the full-horizon (A)DP to each of
them. We use these solutions to train a function approxima-
tor that maps the parameters of the MDP (the task descrip-
tor) to the value function. Later when we want to solve a
new MDP, this learned function provides the terminal value
at horizon H . After the initial training phase, the saving in
the computation time is proportional to T

H . The suggested
algorithm acts as a receding horizon controller. Instead of
following the obtained policies for all H time steps, we re-
plan after each time step. This makes the system more robust
to the model uncertainties as well as the uncertainty in the
terminal value function. We call this algorithm Truncated
Approximate Dynamic Programming with Task-Dependent
Terminal Value, and we introduce it in Section 2. This setup
has clearly some elements of multi-task learning. Its under-
lying working assumption is that the value function of the
MDP as a function of the parameter describing the MDP has
certain regularities that can be exploited by a learning algo-
rithm, e.g., small changes in the parameter leads to small
changes in the value function. This is the case for many
problems including the aforementioned energy management
system for HEV.

We study the theoretical properties of this algorithm in
Section 3. We provide an error propagation theorem for
the proposed Truncated ADP procedure. We consider three
sources of errors: 1) The error in estimating the terminal
value function, 2) The error in applying the Bellman op-
erator at each iteration of the procedure, and 3) The error
in the model used for planning. This theoretical result can
be used beyond the context of Truncated ADP. By setting H
equal to T , we obtain an error propagation result for an ADP
procedure for solving finite-horizon MDPs with model un-
certainty. The result also holds when we do not use a model,
but directly have access to samples, i.e., batch reinforcement

Algorithm 1 Truncated ADP Solver with Task-Dependent
Terminal Value

Input: MDP Model (X ,A,Rθ, P̂θ, T ) for task θ; Horizon H ,
Dataset Dn =

{(
(Xi, ti, θi), V

∗
θi,ti

(Xi)
)}n
i=1

; Initial State X1

V̄ ← REGRESS(Dn) {Learn a regression estimator.}
Set X1.
for t = 1 to T do
V̂ ← TRUNCATEDADP(Rθ, P̂θ, t,H, V̄θ)
At ← π̂t(Xt;Rθ, P̂θ, V̂ ) , argmaxa∈A{rθ,t(Xt, a) +∫
P̂θ(dx′|x, a)V̂t,t+1(x′)}

Xt+1 ∼ Pθ(·|Xt, At){Perform the action in the environ-
ment}

end for

Algorithm 2 TRUNCATEDADP(Rθ, P̂θ, t,H, V̄θ)
Input: MDP Model (X ,A,Rθ, P̂θ, T ) for task θ; Time step t;
Horizon H; Global value function estimator V̄ .
if t+H < T then
h← H

else
h← T − t

end if
V̂t,t+h ← V̄θ,t+h
for τ = t+ h− 1 to t do
Ṽt,τ (x) , maxa

{
rθ,τ (x, a) +

∫
P̂θ(dx′|x, a)V̂t,τ+1(x′)

}
for all x ∈ X .
V̂t,τ ← APPROX(Ṽt,τ )

end for
return V̂

learning sampling scenario.

2 Truncated Approximate Dynamic
Programming Framework

Consider a finite-horizon MDP (X ,A,Rθ,Pθ, T ) param-
eterized by θ ∈ Θ. Here T ∈ N is the time horizon, X
is a (possibly continuous) state space, A is a finite action
set, Rθ : X × A × {1, 2, . . . , T} → M(R) is the imme-
diate reward distribution, and Pθ : X × A → M(X ) is
the transition probability kernel.1 The expected immediate
reward at time t is rθ,t(x, a) = E [Rθ,t(·|x, a)]. We denote
V ∗θ : X × {1, . . . , T} → R as the optimal value function
and π∗θ : X × {1, . . . , T} → A as the optimal policy. We
may use double subscripted V ∗θ,t : X → R to refer to the
optimal value function at time step t for parameter θ. If the
parameter θ is clear from the context, or its particular choice
is not important, we may drop it.

The goal of Truncated ADP is to solve a given MDP pa-
rameterized by θ by planning not for all T horizon steps, but
for some H ≤ T steps, which in practice may be chosen to
be H � T . We assume that in the pre-planning phase, we
have access to V ∗θ′ for several instances of θ′ ∈ Θ. The com-
putational time of this pre-planning phase is not a concern
for us.

1M(S) denotes the set of all probability distributions defined
over a set S with a σ-algebra σS .



The Truncated ADP can be used in either planning or
batch RL scenarios. In the planning scenario we assume
that an approximate MDP (X ,A,Rθ, P̂θ, T ) is known. The
known transition model P̂θ might be different from Pθ,
in which case we have a modeling error. In the RL sce-
nario, we assume that we have a batch of data in the form
of {(Xt,i, At,i, Rt,i, X

′
t,i)}i=1,...,N ;t=1,...,T−1 with Xt,i ∼

ν ∈ M(X ), Rt,i ∼ Rθ(·|Xt,i), and X ′t,i ∼ P̂θ(·|Xt,i).
To make the presentation simpler, we focus on the plan-
ning scenario, and only add remarks on how the method
can be applied in the RL setting. We are ready to describe
the Truncated Approximate Dynamic Programming (TADP)
with Task-Dependent Terminal Value, or simply TADP.

The TADP algorithm, described in Algorithm 1, is based
on two insights. The first is that whenever the optimal
value function as a function of θ has some kind of regu-
larity (e.g., various notions of smoothness with respect to
(w.r.t.) θ), we can hope to learn an approximate mapping
from θ to the optimal value function by solving a regres-
sion/function fitting problem. We denote this estimator as
V̄ : X × {1, 2, . . . , T} ×Θ→ R.

The second insight is based on the recursive
property of the value function. As V ∗t (x) =

E
[∑T

t′=t rt′(Xt′ , π
∗
t′(Xt′)) | Xt = x

]
for any

t ∈ {1, . . . , T}, we have

V ∗t (x) = E

[
t+H−1∑
t′=t

rt′(Xt′ , π
∗
t′(Xt′)) + V ∗t+H(Xt+H) | Xt = x

]

≈ E

[
t+H−1∑
t′=t

rt′(Xt′ , π
∗
t′(Xt′)) + V̄t+H(Xt+H) | Xt = x

]
,

provided that V̄t+H is a good approximation of V ∗t+H . So if
V̄t+H is accurate, it is enough to plan only for H ≤ T steps
to have a good estimate of V ∗t . This leads to huge computa-
tional saving when H � T . The truncated ADP solver acts
in a receding horizon manner, so at each time step, we solve
a new truncated ADP of length H . These insights lead to
Truncated ADP solver with Task-Dependent Terminal Value
(Algorithm 1).

We briefly describe a few key elements of the algorithm.
In the pre-planning phase (aka training phase), Algorithm 1
solves a regression problem using the given dataset Dn =
{((Xi, ti, θi), V

∗
θi,ti

(Xi))}ni=1 to learn V̄ . Any powerful re-
gression method, including random forests, regularized re-
gression in a reproducing kernel Hilbert space (RKHS), or a
deep neural network can be used. Our empirical evaluations
as well as the recent work by (Schaul et al. 2015) show the
practical feasibility of learning V̄ as a function of both state
and the task θ (or the goal in the aforementioned work).

We may also provide some theoretical guarantees on the
quality of learning V ∗ by V̄ . As an example, consider that
X × Θ is a compact subset of RdX×Θ . If V ∗θ,t(x) as a func-
tion of (x, θ) belongs to a finite-norm subset of the Sobolev
space Wk(X ×Θ), the space of all functions whose all k-th
mixed derivatives are in L2(X × Θ), it roughly holds that

‖V̄ ∗θ,t − V ∗θ,t‖1/2 ≤ c1n
− k

2k+dX×Θ . So as n increases, the

error decreases too with a rate of convergence that depends
on the joint dimension dX×Θ and the complexity of V ∗θ as
measured by k.

A practical approach to generate Dn is to randomly
choose several θj (j = 1, . . . ,K), calculate V ∗θj for
each of them, collect V ∗θj ,tj (Xj,i) for many (tj,i, Xj,i) ∈
{1, . . . , T} × X , and then store all of them in Dn. The dis-
tribution of θj should be close to the distribution of θ en-
countered during the planning phase to ensure proper gen-
eralization. Furthermore, note that if the state space is large,
the exact computation of V ∗θi itself might be infeasible. In
that case, we use approximation scheme similar to various
fitted/approximate value iteration algorithms to provide an
estimate V̂ ∗θi of V ∗θi (Riedmiller 2005; Ernst, Geurts, and We-
henkel 2005; Murphy 2005; Munos and Szepesvári 2008;
Farahmand et al. 2009; Farahmand and Precup 2012). This
dataset is obtained offline, so its computation time is not a
concern. For example, in the HEV energy management sys-
tem described earlier, this dataset is not obtained by a car’s
onboard computer, but by a powerful computer of the car
manufacturer.

After this initialization, Algorithm 1 repeatedly calls
TRUNCATEDADP (Algorithm 2), which performs ADP
with a truncated horizon H . TRUNCATEDADP uses V̄
to set the terminal value. As before, if the state space
is large, the exact computation of the Bellman opera-
tor, and as such Ṽ , might be difficult or impossible, so
we use fitted/approximation value iteration algorithms, as
mentioned earlier. For example we can randomly choose
{Xj}Nj=1 with Xj ∼ ν ∈ M(X ), and define Y aj =

rθ,τ (Xj , a) + V̂t,τ+1(X ′j) with X ′j ∼ P̂θ(·|Xj , a) for
all a ∈ A. Afterwards, we solve |A| regression prob-
lems Q̂t,τ (·, a) ← REGRESS

(
{Xj , Y

a
j }Nj=1

)
, and let

V̂t,τ (x) = maxa∈A Q̂t,τ (x, a).2 If REGRESS is chosen
properly, the difference between V̂t,τ and Ṽt,τ becomes
smaller as N increases. The same procedure can be used
when the model is not known, but we have a batch of data
in the form of {(Xτ,j , Aτ,j , Rτ,i, X

′
τ,j)}Nj=1 (with X ′τ,j de-

fined as before) for the transition happening at time step τ
according to Pθ (or even P̂θ). This constitute the APPROX
step of the algorithm.

Before providing theoretical guarantees for TADP, let us
briefly mention that there are some other algorithms with
some similarities to TADP. One class is the family of Model
Predictive Controllers (MPC), and in particular the rollout
algorithm, cf. e.g., (Bertsekas 2005). The rollout algorithm
is similar to TADP withH = 1 with a crucial difference that
it uses the value of the rollout policy instead of the estimate
V̄ . Moreover, the rollout algorithm does not have any multi-
task aspect. The multi-task aspect of TADP with its attempt
to learn V̄θ has some remote similarities with some works
that learn a policy that generalizes over multiple tasks, e.g.,

2The semantics of double subscripts in V̂t,τ and Ṽt,τ is different
from that in V ∗θ,t, which was described earlier. In the former cases,
the first index refers to the t-th call by Algorithm 1 and the second
index refers to a particular iteration of Algorithm 2.



(da Silva, Konidaris, and Barto 2012; Deisenroth et al. 2014;
Kober et al. 2012). All these methods learn a multi-task pol-
icy instead of multi-task value function V̄ as in this work.
More importantly, the learned policy is not used as a part of
any further planning when the agent has to solve a new task.
TADP, on the other hand, goes through a new planning phase
after facing a new task, and uses the learned value function
to bootstrap the planning at the truncation horizon.

3 Theoretical Analysis
In this section we analyze Truncated Approximate Dy-
namic Programming (TADP) with Task-Dependent Termi-
nal Value and provide error propagation results similar to
those of (Munos 2007; Farahmand, Munos, and Szepesvári
2010; Scherrer et al. 2012; Huang et al. 2015). Theorem 1
provides an L1(ρ) error upper bound for the difference be-
tween the optimal value function and the value function
of following the policy sequence obtained by Algorithm 1
w.r.t. a performance measuring distribution ρ ∈ M(X ),
i.e.,

∫
X (V ∗t (x)− V πt:Tt (x)) ρ(dx). The distribution ρ de-

termines our emphasis over different regions of the state
space. In the results, another distribution ν ∈ M(X ) ap-
pears with respect to which the norm of the contributing er-
rors is measured. One may think of it as the sampling distri-
bution used at each step of TRUNCATEDADP (Algorithm 2),
but its choice is not limited to that. The proofs and more de-
tailed discussions will be presented in an extended version
of this work.

For the sequence of V̂t,t′ generated by Algo-
rithm 2, we define the corresponding sequence of
greedy policies: πt,t′(x) = π̂t′(x;Rθ, P̂θ, V̂t,·) =

argmaxa∈A
{
rθ,t′(x, a) +

∫
P̂θ(dx′|x, a)V̂t,t′+1(x′)

}
.

We notice that the policy that is executed at time t by
Algorithm 1 is indeed πt,t. The sequence of such policies
defines a non-stationary policy π̄ = (π1,1, . . . , πT,T ). We
denote the subsequence of π̄ from time t to the end of
horizon by π̄t = (πt,t, . . . , πT,T ). To simplify the notations
we omit the dependence of these quantities on θ.

We have three sources of errors in Algorithms 1 and 2.
The first is the error caused by using the global value func-
tion approximator V̄ to set the terminal value V̂t+h(t). For
time τ = t + h(t), we denote δτ , V̂t,τ − V ∗τ . Therefore,
we have a sequence of δh(1), . . . , δT . The second source of
error is caused by the model mismatch between the true
model P of the MDP and the model P̂ used for planning
in Algorithm 2. We denote this error by ∆P : X × A →
M(X ) ∪ −M(X ) with ∆P , P̂ − P . The final source of
error is caused by performing ADP instead of exact DP. This
is the error between V̂t,τ and Ṽt,τ in Algorithm 2. We define
et,t′ , V̂t,t′− Ṽt,t′ for t = 1, . . . , T and t′ = t, . . . , t+h(t).
The analysis does not depend on how this error is occured.
So this might be an error caused by approximating the ex-
pectation over the next-state distribution, or the regression
error in a fitted ADP procedure.

We use Pπ as the transition probability kernel of follow-
ing π, and for a sequence of policies π1:m = (π1, . . . , πm),
Pπ1:m as the transition probability kernel of choosing ac-

tions according to these policies consecutively. (PπV )(x)
is the expected value of function V w.r.t. the distribution
induced by following Pπ from state x. For a probability
distribution ρ ∈ M(X ), ρPπ ∈ M(X ) is the distribu-
tion induced by following Pπ when the initial distribu-
tion is ρ. For 1 ≤ p, q < ∞, we define ‖∆Pπ‖p,q(ν) =[∫

dν(x)
[∫
|∆Pπ(dy|x)|p

] q
p

]1/q
.

We define the following concentrability coefficients sim-
ilar to those defined by (Munos 2003; Kakade and Lang-
ford 2002; Munos 2007; Farahmand, Munos, and Szepesvári
2010; Scherrer et al. 2012; Huang et al. 2015).
Definition 1 (Concentrability Coefficients). Given two
probability distributions ρ, ν ∈ M(X ), an integer k ≥
0, and an arbitrary sequence of policies π1:k, ρPπ1:k ∈
M(X ) denotes the future-state distribution after choos-
ing the initial state distribution ρ and following π1:k af-
terwards. Let 1 ≤ p < ∞. Define the following concen-
trability coefficients: cρ,ν(k) , supπ1:k

‖d(ρPπ1:k )
dν ‖∞ and

c̄ρ,ν,p(k) , supπ1:k
[
∫
|d(ρPπ1:k )

dν (y)|pdν(y)]1/p. If ρPπ1:k

is not absolutely continuous w.r.t. ν, we set cρ,ν(k) = ∞
and c̄ρ,ν,p(k) =∞.
Definition 2. Consider two probability distributions ρ, ν ∈
M(X ). For any integer k ≥ 0 and real number β >

0, define the followings: C(k; ρ, ν) ,
∑k
s=0 cρ,ν(s) and

C̄(k; ρ, ν) ,
∑k
s=0 c̄ρ,ν,2(s).

The following theorem is the main theoretical result of this
paper.
Theorem 1. Consider the sequence of policies π̄ =
(π1,1, . . . , πT,T ) generated by Algorithm 1. Assume that
V̂·,· ∈ B(X , Vmax). We then have∥∥V π̄1

1 − V ∗1
∥∥

1,ρ
≤ c1 C(T ; ρ, ν)×[

H

(
max
t,t′
‖et,t′‖1,ν + Vmax sup

π
‖∆Pπ‖1,1(ν)

)
+ max

t
‖δt‖1,ν

]
,

in which c1 > 0 is a universal constant. The same bound
would hold if we replaceC with C̄ and all theL1-norms with
the L2-norms. Moreover, assuming that cρ,ν(s) = O(1) and
c̄ρ,ν,2(s) = O(1), we also have∥∥V π̄1

1 − V ∗1
∥∥

1,ρ
≤ c2

[
TH

(
max
t,t′
‖et,t′‖1/2,ν +

Vmax sup
π
‖∆Pπ‖1/2,1/2(ν)

)
+

T max
t
‖δt‖1/2,ν

]
,

in which c2 > 0 is a universal constant.
This result shows the effect of the error in the global func-

tion approximator ‖δ·‖1/2,ν , the error of performing ADP
‖et,t′‖1/2,ν , and the model mismatch error ‖∆P‖1/2,ν on
the performance loss ‖V π̄tt − V ∗t ‖1,ρ. The dependence of
the upper bound on the error caused by truncation is O(T ),
while the dependence on the error caused by the model mis-
match and ADP is O(TH). Intuitively, at each iteration of
TRUNCATEDADP (Algorithm 2) we only make error in es-
timating the terminal value once, but we make the modeling



error and the ADP errors H times. This error in estimating
V ∗t by V̂t,t happens at each time step t, so for an agent that
start from time t = 1 and uses V̂t,t to choose its action until
it gets to t = T , it makes errors T times.

The increase of the upper bound as a function of H is
intuitive as increasing the planning horizon means more ac-
cumulation of the errors caused by et,t′ and ∆P . If the es-
timate of the terminal value function V̄t is such that ‖δt‖ is
uniformly small for all t, it is better to choose H as small as
possible, e.g., H = 1. Nevertheless, it seems that for some
classes of MDPs, the estimation of V ∗t for larger t is easier.
If the MDP is such that as we get farther from the termi-
nal time T , the value function becomes more “complex”,
e.g., in the smoothness sense or some other relevant mea-
sure of function complexity, one can then show that ‖δt‖ is
a decreasing function of t. Studying the subtle behaviour of
learning V̄ as a function of the complexity of V ∗t is an in-
teresting future research topic. The main point, however, is
that there is a tradeoff between choosing smaller H (leading
to smaller ADP and modeling errors) and choosing larger
H (leading to possibly smaller global value function esti-
mation error for certain MDPs). We note that the observa-
tion that choosing smaller horizons might be beneficial have
been made by (Jiang et al. 2015) and (Petrik and Scherrer
2009). Their results are from perspectives different from the
error propagation theory.

These error propagation results have the same general
flavour as some previous work in other settings, e.g., Ap-
proximate Value Iteration (Munos 2007), Approximate Pol-
icy Iteration (Munos 2003), and Approximate Modified Pol-
icy Iteration (Scherrer et al. 2012), all for discounted MDPs,
finite-horizon MDP (Murphy 2005), and a finite horizon
MDP with softmax-based Bellman operator (Huang et al.
2015). All of them consider the effect of terms similar to
e·, but because of different setup, they do not consider
the effect of truncation. Also they do not consider the ef-
fect of modeling error. Moreover, the current result uses
a refined definition of concentrability coefficients, which
is similar to (Farahmand, Munos, and Szepesvári 2010;
Scherrer et al. 2012).

We summarize a few key steps of the proof. First we prove
an upper bound on the error in approximating the optimal
value function, that is |V̂t,t′ − V ∗t′ |. The upper bound de-
pends on ∆P , et,t′ , δt+h(t), as well as P itself. We then re-
late V ∗t −V

π̄t
t , the pointwise performance loss, to |V̂t,t′−V ∗t′ |

and some other quantities. Therefore we obtain a point-
wise upper bound on V ∗t − V π̄tt that takes into account
all three sources of errors in TADP. What makes this part
of analysis intricate is that we have to 1) consider three
sources of errors (δ, e, and ∆P) as opposed to the more
usual case of only considering terms like e (Munos 2007;
Farahmand, Munos, and Szepesvári 2010), and 2) take extra
care in dealing with a horizon that is not only finite, but also
smaller than T and may actually change depending on how
far we are from T (recall that TADP uses h(t) ≤ H ≤ T ).
Finally, we use a change of measure argument to related the
L1(ρ) performance loss to the aforementioned pointwise er-
ror. The argument uses a general definition of the concentra-

bility coefficient as well as the decomposition of the relevant
terms to error-related and concentrability-related terms.

4 Experiments
We apply the proposed method to design an energy manage-
ment system for a hybrid vehicle (Sciarretta and Guzzella
2007). Hybrid Electric Vehicles are among the most energy-
efficient, cost-effective, and dependable classes of trans-
portation systems. This is mainly because of their ability of
regenerating energy during braking that would otherwise be
lost, and storing that energy into relatively less expensive
batteries than those installed in purely electrical vehicles, as
well as enjoying the long range, reliability, and high energy
density typical for internal combustion engines (ICE). When
two engines are available, an electric one and a fossil fuel
one, an important question is when to use each of them. It
has been shown that the overall energy efficiency of HEV
can significantly be improved if the operation of the engines
is coordinated carefully over the duration of an entire trip
by taking into consideration the nature of the terrain that the
trip will cover, and the current state of the vehicle. One ap-
proach that has been used to calculate the optimal policy is
dynamic programming, see e.g., (Larsson, Johannesson, and
Egardt 2014) and references therein.

Although true optimality is a very favourable feature of
exact dynamic programming, its computational complexity
is not a good match to the current level of embedded comput-
ers available in mass-produced passenger vehicles. TADP
with Task-Dependent Terminal value has been designed with
exactly this objective: reducing the onboard computational
cost and delegating the costly computation offline. In this
section, we study the quality of TADP’s policies compared
to the optimal policy. We study the effects of the number of
training data used to learn the task-dependent terminal value,
planning horizon, and the uncertainty in the model used for
planning.

The hybrid vehicle optimization problem can be formu-
lated as a finite-horizon MDP T , which pertains to a sin-
gle trip between given starting and destination points, with
the state variable xt being the State of Charge (SoC) of the
battery at time step t.3 In its simplest form, the action at
determines whether the electric motor (EM) should be used
at time t or the ICE should be deployed. The objective is to
minimize the total cost of the energy consumption during the
trip. The energy consumption depends on the amount of fuel
spent and the total electrical energy required to recharge the
battery at the end of the trip. The amount of fuel or electric-
ity consumed at each time step is a complex function of the
vehicle’s velocity, acceleration, and the road’s slope. For the
experiments, we use a simulator that uses principles similar
to (Larsson, Johannesson, and Egardt 2014). We set T to 115
with each time step corresponding to one minute of physical
time, so we plan for an almost two hour trip. The parameter
θ is a vector of dimension 230 describing the altitude and
the speed profile of the run-curve.

3Other formulations of the problem, such as discounted or av-
erage reward MDP, are possible too, but we focus on this rather
standard finite horizon formulation.
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Figure 1: The suboptimality of TADP as a function of the
number of training data points and the planning horizon H .
The dashed line depicts one standard error.
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Figure 2: The suboptimality of TADP as a function of the
planning horizonH and the uncertainty level ∆. The dashed
line depicts one standard error.

The application of TADP requires us to learn V̄ , which is
obtained as follows: We generate several random run-curves
θi, find the “optimal” value function V ∗θi by dynamic pro-
gramming, and select several random points in time and
state from each random run-curve. These points define the
training data. Instead of directly working with a 230 + 2-
dimensional vector (the vector of θ as well as x and t), we
extract a 7-dimensional features that approximately sum-
marize the route and the current state of the vehicle. We
then use these features as an input to a reproducing ker-
nel Hilbert space (RKHS)-based regularized least-squares
regression estimator to find the estimate of V̄ .

After learning V̄ , we generate a new random run-curve
θ from the same distribution which was used in generat-
ing training data and call Algorithm 1, which itself calls
TRUNCATEDADP (Algorithm 2). We use DP (with 2000
discretization of the state variable x) and perform H iter-
ations of the Bellman backup.

Figure 1 shows that when the number of training points
n increases, the quality of TADP’s policy increases too for
all choices of the horizon. This indicates that the learned
V̄ is actually good enough for truncating the horizon, even
though the parameter space Θ is high-dimensional (230). If
the features were sufficiently rich to represent all possible
run-curves, increasing n would result in having an ever im-
proving V̄ approximation of V ∗θ . If V̄ (θ) = V ∗θ uniformly
over θ, t, and x, even having H = 1 is sufficient to act opti-
mally. This is of course not the case here (remember that our
features are not necessarily optimal), so we expect that for
H = 1, the suboptimality ratio does not eventually reach 1.
Nevertheless, we see that it is continually improving for this
range of training points, and it does not appear that the im-
provement is saturating. The quality of the policy with 8000
training points and H = 1 is within 1.5% of the optimal
one, which is indeed remarkable. This might be compared
with a “nominal” policy, which is defined as the policy that
uses the battery whenever it is charged more than a certain
threshold (5% in our experiments), and switches to ICE oth-
erwise. This policy has the suboptimality ratio of ≈ 1.27.

We also observe that increasing H improves the quality
of the policy with the same V̄ . Even a small H � T , for
instance H = 10, leads to a high quality policy. This is
an interesting tradeoff. We may increase the quality of the
task-dependent terminal value V̄ by using more data points
and/or better function approximator architectures. This gen-
erally means that we spend more computation time offline.
On the other hand, we may use a lower quality V̄ , but in-
crease H . This results in an increase in the online computa-
tion. The right balance is problem specific and depends on
several factors such as how the function approximator and
each step of ADP are implemented, the onboard computa-
tional power, etc.

We now turn to studying the effect of uncertainty in the
quality of resulting policy. Intuitively, if the model used for
planning is uncertain, it does not make sense to plan long
ahead. Here we fix the number of training points used to
learn V̄ to 2000. To generate modeling error, in the form of
stochastic uncertainty, we multiply the change in the state
of charge (i.e., the amount of battery that is used) and the
fuel consumption by a random variable drawn from the uni-
form distribution U(1 − ∆

2 , 1 + ∆
2 ) where ∆ is the amount

of uncertainty. We select ∆ from the set {0, 0.3, 0.6, 0.8}.
So for example, in the extreme case, the amount of fuel con-
sumption used for planning can be between 60% to 140%
of the actual value. This random sampling is done at each
time step. So this can be seen as an unbiased model for the
sensors measuring the state of charge and the fuel consump-
tion. Here we report the results averaged over 20 indepen-
dent runs.

Figure 2 shows that when there is a modeling error, in-
creasing the horizon does not necessarily lead to improved
performance. This is as opposed to the case when there is
no modeling error. More interestingly, it appears that there
is a sweet spot for the planning horizon H depending on the
level of uncertainty. For high amount of uncertainty, how-
ever, the shortest planning horizon becomesH = 1. We also
see that as the uncertainty level increases, the quality of the



policy degrades. One should not interpret the performance
degradation as a downside of TADP per se, but an indication
that whenever the model used for planning is very inaccu-
rate and different from reality, one cannot and should not
plan much ahead.
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