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Manifold-Adaptive 
Dimension Estimation



High-Dimensional Data 
Everywhere

• Vision

• Sensor Fusion

• Feature Expansion

• Kernel 

• ...



Curse of Dimensionality
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Practical Implications

• Thou shall reduce the dimension of the 
data before working with it! 

• Thou shall not add features unnecessarily!

• Thou shall not accept projects with high-
dimensional data!

• ... !

W
ait!
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Regularities of Data
• Smoothness

• Sparsity

• Low noise at boundary

✓ Lower dimensional submanifold

• LLE, IsoMap, Laplacian Eigenmap, Hessian Eigenmap, ...

• Semi-supervised Learning, Reinforcement Learning, ...



Goal

• Manifold-adaptive machine learning methods

• Convergence rate independent of the 
dimension of the input space



Many open questions!

Here:

dimension estimation
(:



Why?

• Needed in various learning methods

• Not known a priori



New?

• Many existing methods [Pettis et al. (1979), Kegl (2002), 
Costa & Hero (2004), Levina & Bickel (2005), Hein & Audibert (2005)]

• No rigorous analysis

• Asymptotic result [Levina & Bickel (2005)]



Our Contribution

• New algorithm

• K-NN

• Manifold-adaptive convergence rate



General Idea
P (Xi ∈ B(x, r)) = η(x, r)rd
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d̂(x) =
ln 2

ln(r̂k(x)/r̂!k/2"(x))

P (Xi ∈ B(x, r)) = η(x, r)rd

ln (P (Xi ∈ B(x, r))) = ln(η(x, r)) + d ln(r)

ln(k/n) ≈ ln(η0) + d ln(r̂k(x))

ln(k/(2n)) ≈ ln(η0) + d ln(r̂!k/2"(x))



Finite Sample 
Convergence Rate

d̂(Xi) =
ln 2

ln(r̂(k)(Xi)/r̂(!k/2")(Xi))

Theorem: Under some regularity assumptions on η, provided that n
k > Ω(2d),

with probability at least 1− δ,

|d̂(Xi)− d| ≤ O

(
d

[(
k

n

) 1
d

+

√
ln(4/δ)

k

])
.



Issues

Inefficient use of data
r ! 1 =⇒ k ! n

d̂(Xi) =
ln 2

ln(r̂(k)(Xi)/r̂(!k/2")(Xi))

High variance of d̂(Xi)



Aggregation

Theorem:

Manifold-Adaptive Dimension Estimation

can be shown to enjoy exponentially fast rates5 . In
particular, for some universal constants c, c′, c′′ > 0,
we have

P
(
d̂vote != d

)
≤ e

− c′n
(cd k)2 , (8)

P
(
d̂avg != d

)
≤ e

− c′′n
(Dcd k)2 . (9)

From these bounds we can conclude that voting should
be preferred since in the case of the averaging bound
the rate of convergence depends on D (though only
in a very mild, polynomial way). However, our ex-
perimental results seems to suggest that the estimate
for the averaging method is probably too conservative
as it tends to produce better results than voting, at
least for the particular dataset and choice of parame-
ters that we considered.

Due to the lack of space the proof of this statement is
deferred to the full version of this paper, but the proof
of Theorem 1 which is the key to this proof as well is
given in the next section.

4. Proofs

Theorem 1 is proven in a series of lemmas. First, let
us remark that due to the independence of samples,
it suffices to show the result for any deterministically
selected point x ∈ M . Hence, in what follows we will
consider this case. For the sake of brevity we shall sup-
press the dependence on x in the rest of this section.

Let p = k/n. By the triangle inequality,

|d− d̂| ≤ |d− d(p)| + |d(p)− d̂|. (10)

Here d(p) is defined by

d(p) =
ln 2

ln(rp/rp/2)
. (11)

By (2), if η(x, rp) = η(x, rp/2) were hold true then
d(p) = d would hold. Hence, the source of the error
|d − d(p)| is the change in η in the neighborhood of
x. By Assumption 1 on η, we can make this error
controllable.

The following statement follows by elementary consid-
erations (the proofs of these lemmas are given in the
appendix):
Lemma 1. |d − d(p)| ≤ CBdrp provided that rp <
(0.2/B) ∧ r0. Here C ≤ 8 is a universal constant.

It is easy to see that rp ≤ (ηmin)−1/d(k/n)1/d. When
the density is non-uniform this estimate might be very

5Bounded curvatures and that the manifold is not self-
approaching are the main assumptions.

conservative. We prefer a bound that depends on the
properties of the density in the vicinity of x. Using
the observation stated after Assumption 1, we get the
following result:
Lemma 2. Assume that Brp < (0.5 ∧ r0). Then

rp ≤ ((ηmin)−
1
d ∧ η(x, 0)−

1
d ( 1

2 + 2
1
d ))

(
k

n

) 1
d

.

Chaining the inequalities of Lemma 1 and Lemma 2
we get that |d − d(p)| ≤ CdBrp ≤ C((ηmin)− 1

d ∧
η(x, 0)− 1

d ( 1
2 + 2 1

d ))Bd
(

k
n

) 1
d .

The second term of (10), |d(p) − d̂|, is bounded by
relating it to the relative errors of estimating rp by
r̂(k) (and rp/2 by r̂(#k/2$)).
Lemma 3. If d(p)′ is defined by d(p)′ =
ln(2)/ ln(r′p/r′p/2) for some positive quantities r′p and
r′p/2 then for

α = max

(∣∣∣∣
r′p
rp
− 1

∣∣∣∣ ,

∣∣∣∣∣
r′p/2

rp/2
− 1

∣∣∣∣∣

)
,

|d(p)− d(p)′| ≤ Cd2α (12)
provided that α ≤ c/d and rp < (0.2/B) ∧ r0, where c
is a fixed universal constant.

Again, the proof of this lemma uses elementary anal-
ysis. By this lemma, in order to get a bound on
|d(p)− d̂|, we need to analyze the relative error of es-
timating rp by r̂(k). We get the following lemma by
using Assumption 1.
Lemma 4. Assume that rp < (4B′)−1 ∧ r0 and α ≤
1/(4(d + 1)). Then

P
(
r̂(k) ≤ rp(1− α)

)
≤ exp(−C1kα2(d− 1

4 )2) (13)

P
(
r̂(k) ≥ rp(1 + α)

)
≤ exp(−C2kα2(d− 1

4 )2) (14)

where C1 = 3
8 (1− d−2

4(d+1) )(1−
3

16(d+1) ), C2 = 3e−1/4

8 (1−
1

8(d+1) )(1−
1

16(d+1)(d−1/4) )
2.

The proof of this lemma relies on Bernstein’s inequal-
ity. According to these bounds, with probability at
least 1− δ,

max
{∣∣∣∣

r̂(k)

rp
− 1

∣∣∣∣ ,

∣∣∣∣
r̂(#k/2$)

rp/2
− 1

∣∣∣∣

}
≤ C3

1
d

√
ln(4/δ)

k

with a suitable universal constant C3. Hence,

|d− d̂| ≤ C(x)d

(
B

(
k

n

) 1
d

+

√
ln(4/δ)

k

)

holds with probability at least 1−δ, which proves The-
orem 1.

• Averaging

• Voting d̂vote = arg max
d′

n∑

i=1

I{[d̂(Xi)] = d′}

d̂avg =

[
1
n

n∑

i=1

d̂(Xi)

]



Experiments



Varying the Manifold 
Dimension
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Varying Embedding Space Dimension
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Other DatasetsManifold-Adaptive Dimension Estimation

Table 1. Percentage of correct dimension estimates for different sample sizes. The first values in a cell (not in parentheses)
is for the averaging method, while those in parentheses are for the voting method.

Data set n=50 n=100 n=500 n=1000 n=5000

S1 98 (99) 100 (100) 100 (100) 100 (100) 100 (100)
S3 75 (19) 95 (20) 100 (15) 100 (19) 100 (62)
S5 33 (5) 50 (10) 100 (9) 98 (2) 100 (0)
S7 18 (2) 17 (3) 57 (1) 54 (1) 100 (0)

Sinusoid 92 (98) 100 (100) 100 (100) 100 (100) 100 (100)
10-Möbius 69 (47) 13 (74) 100 (98) 100 (99) 100 (100)
Swiss roll 62 (71) 49 (91) 88 (96) 100 (100 100 (100)

5. Experimental Results

The purpose of this section is to provide some experi-
mental evidence on the performance of our algorithm.
We investigated the influence of the following factors:
(i) number of samples (n), (ii) the manifold’s dimen-
sion (d) (iii) the embedding space’s dimensionality
(D), (iv) the number of centers used when combining
the local estimates (m)6, (v) the number of neighbors
(k), and (vi) the noise level. Due to the lack of space
here we only present results for (i)–(iii). The other re-
sults will be given in the longer version of this paper,
here we remark only that according to our experience
the algorithm’s performance degrades gracefully when
noise, not respecting the manifold is added to the data.
Noise is the Achilles heel of manifold-aware algorithms
as it changes the support of the sampling distribution.
We leave it for future work to study the behaviour of
manifold-aware algorithms in the presence of noise.

The default setting of the parameters are m = n/2 and
k = !2 ln n". These parameter settings were used in all
the experiments.7 Except for the real-world dataset,
we performed the measurements by repeating the cal-
culations 100 times, for 100 different randomizations of
the datasets considered. We report average errors and
the percentages when a correct estimate was obtained.

The datasets used were essentially identical to those
used by Hein and Audibert (2005), i.e., they in-
clude some standard datasets such as spheres of var-
ious dimensionality and some high-curvature datasets
for which dimension estimation is quite challenging.

6In the theoretical analysis we assumed that m = n
(see Equations (4) and (5)). However, one can also select
datapoints participating in the computation in a random
fashion (by sampling data points uniformly with replace-
ment). The hope is that an equivalently good estimate can
be obtained by less work.

7Note that according to the theory developed this choice
of k is inferior to e.g. k = n1/2. However, k = O(ln n)
yields much less computation and was therefore preferred
in the experiments.

In the case of shperes the data points are sampled
uniformly from a d-dimensional sphere Sd embed-
ded in Rd+1. The sinusoid dataset is a one di-
mensional oscillating sinusoid on the circle in R3.
The data points come from the manifold M =
{(sin(u), cos(u), 1

10 sin(10u)) |u ∈ [0, 2π)}, where the
samples are obtained by drawing random points uni-
formly at random in the interval [0, 2π). The 10-
Möbius strip is a two dimensional submanifold in
R3, created by twisting a two dimensional rectan-
gle 10 times. Data points are obtained by sampling
points (U, V ) uniformly on [−1, 1]× [0, 2π) and return-
ing x1(U, V ) = (1 + U

2 cos(5V ))cos(V ), x2(U, V ) =
(1 + U

2 cos(5V )) sin(V ), and x3(U, V ) = U
2 sin(5V ).

We used two other datasets: “Swiss roll” and the
ISOMAP Face datset. The Swiss roll is a two dimen-
sional manifold embedded in R3 (Levina and Bickel,
2005). ISOMAP Face consists of 698 64 × 64 images
(256 gray levels) of a face sculpture (Tenenbaum et al.,
2000). For this dataset we obtained an estimate of four
when using d̂avg, while we got an estimate of 3 when
using d̂vote. Earlier results by others suggest that the
intrinsic dimensionality is 3.

Results for the different artificial datasets when the
number of data points (n) is varied are given in Ta-
ble 1. As expected, the number of samples required
for an accurate estimate increases with the intrinsic
dimension of the manifold. We can conclude that (at
least for the parameter settings considered) the aver-
aging method performs better than the voting method.
In particular, voting seems to have troubles when the
number of datapoints is small or the intrinsic dimen-
sion is higher. Therefore in what follows we consider
only the averaging method. Overall the performance
seems comparable to those reported by Hein and Au-
dibert (2005).

Figure 1 shows the average absolute error measured as
the number of samples for S4 and S8. It turns out that
the error behave roughly as O(n−c/d) with c = 2.4.



Conclusions and
Future Work

• New algorithm

• Competitive results

• Manifold-adaptive convergence rate

• Other ML methods?

• K-NN regression can!

• Penalized least squares in the works

• Dimension Reduction?



Questions?



Curse of 
Dimensionality

High-Dimensional Data

Increase the complexity of the function space

Higher variance with the same number of samples

More samples for the same precision



Lower Bound

Assume that mn is a regression function that estimate random variable Y
based on X and Dn = {(X1, Y1), ..., (Xn, Yn)}, and m(X) = E[Y |X]. What is
the best possible performance of mn in L2 sense, i.e. E{‖mn(X)−m(X)‖2}?

For the class of D(p,C) of (X, Y ) distributions, when X ∈ RD, we have the
the following behavior:

E{‖mn(X)−m(X)‖2} > O
(
n−

2p
2p+D

)



Two sources of error:

• Approximation Error: assuming fixed η(x, r)

• Estimation Error: estimating P (X ∈ B(x, r)) with the empirical estimate
k/n.

Both of them can be controlled by changing the size of neighborhood r (which
is related to k/n).
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Experiments
Noise Effect
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Effect of Noise
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Effect of Noise
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Exponential Rate
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