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Problem: Given a loss function and data, design an estimator
with a guaranteed positive output.

Approach #1 (Trivial): Use any regular estimator, but truncate
negative values.

Approach #2: Extend the concept of Sum of Squares, which
guarantees non-negativity, to reproducing kernel Hilbert
spaces (RKHS) and define the estimator in that space.

Given D,, = {(X;,Y;)}{, empirical loss L,(-), function space F,
and regularizer J(-), we want to solve

f < argmin L,,(f) + AJ(f).
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Real polynomial p(z) is called Positive semidefinite or nonnegative if
p(x) > 0 V.
Sum of Squares (S0S): If there exist some other polynomials

q1(x),q2(x), ... such that p(x) = > ¢ (x).

e Verifying SoS is computationally feasible (through Semidetfi-
nite Programming), but verifying PSD is not (NP-Hard).

e For univariate polynomials: SoS and PSD are equivalent.

e For multivariate polynomials: Not all PSD polynomials can be
written as a SoS, but they are an important subclass with some
denseness properties.
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Let us define the vector of monomials: ¢(z) = |1,x,..., 2] ' Le
plx) = >0, q7(x) (SoS representation). £
qi(T) - Qm(x)]T = V¢(x), and

We can write ¢(x)

p(z) =) ¢ (2) =q' ()a(x) = ¢ (1) V()

Key insight: ¢ does not have to be the features defined by monomi-
als.

K: X xX — R, corresponding RKHS H, and associated feature map
¢ : X — H,defined as ¢(x) = (¢:(x)), 7
The space of Sum of Squares (S0S) w.r.t. ¢ is defined as

SE{z—¢' (z)Qp(z) : Q=0}.

Any function f € § is nonnegative.
S is not a subspace of H, but we can construct another RKHS in
which § is a subspace. Define a new feature map ¢ : X — Hj, as

(x) = (¢i(T) - ¢j(5’3))z’,jez°

which has the kernel K’

K'(z,9) 2 (@), ¥(Y) )y = Y 0i(2)d;(x) ¢i(y)d;(y) =

1,J€L
=N " 6i(@)i(y) Y 5(2)05(y) = (8(), d(y))? = K:(x, ).
icT jET
Observe that
S={2 6 (@)Qo(x) : Q=0 } = {m > Quen()ss(@) : Q zo}

— {:U —> Z Qij Vi, () + Q = O} CH'.
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For a particular set { X}, we define S,

S, = {:UHZOQK’(:E,XZ-) ; OzER"}ﬂS.
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Theorem 1 (Representer Theorem). Let L, be a convex empirical loss
function. Then for all X\ > 0, there exists a unique solution f € S satisfying

= inf L, (f) + X fl7, -

A 12
L, A
() +A|f)|,, = inf

Moreover, f cS,.

By representer theorem: f(z) = > ,_, K'(X;,x) under the con-
dition that the function has an SoS representation, i.e., f(xr) =
o(x) ' Qo(x) for some Q = 0.

Define a d x n matrix & = [¢(X1)---¢(X,,)] and an n x n diagonal
matrix A = diag(a) = diag(as,...,a,). Wehave Q = @AD",

() is d x d, but has rank n, which can be much smaller than d. The
constraint on PSDness of () can be written as

eig(Q) = eig(PAD ') = eig(PVAVAD ') = eig(@@ VA) = eig(GA).
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Here G = ®'® is the n x n Grammian matrix. We have ®;; =

g:kez Or(Xi) o (X;) = (9(Xi) , ¢(X5) )gy = K(Xi, Xj).
O We can write:

: 2 : T
inf Lo(f) + A £l = inf L, (; K' (X, ')Oéz) +XaTK'a.

s.t. G diag(a) = 0

For squared loss, we get the following semidefinite program:

min ¢
t,a€ER™
I L xn La Onxn ]
st. | ' L' t+2a'K''Y 01xn > 0.
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