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High-Level Summary
• Problem: Given a loss function and data, design an estimator

with a guaranteed positive output.
• Approach #1 (Trivial): Use any regular estimator, but truncate

negative values.
• Approach #2: Extend the concept of Sum of Squares, which

guarantees non-negativity, to reproducing kernel Hilbert
spaces (RKHS) and define the estimator in that space.

Given Dn = {(Xi, Yi)}ni=1, empirical loss Ln(·), function space F ,
and regularizer J(·), we want to solve

f̂ ← argmin
f∈F,f≥0

Ln(f) + λJ(f).

Sum of Squares Polynomials
Real polynomial p(x) is called Positive semidefinite or nonnegative if
p(x) ≥ 0 ∀x.
Sum of Squares (SoS): If there exist some other polynomials
q1(x), q2(x), . . . such that p(x) =

∑
i q

2
i (x).

• Verifying SoS is computationally feasible (through Semidefi-
nite Programming), but verifying PSD is not (NP-Hard).

• For univariate polynomials: SoS and PSD are equivalent.

• For multivariate polynomials: Not all PSD polynomials can be
written as a SoS, but they are an important subclass with some
denseness properties.

Let us define the vector of monomials: φ(x) =
[
1, x, . . . , xd

]>. Let
p(x) =

∑m
i=1 q

2
i (x) (SoS representation). We can write q̄(x) ,

[q1(x) · · · qm(x)]
>

= V φ(x), and

p(x) =

m∑
i=1

q2i (x) = q̄>(x)q̄(x) = φ>(x)V >V︸ ︷︷ ︸
,Q

φ(x).

Key insight: φ does not have to be the features defined by monomi-
als.

Space of Sum of Squares functions in an RKHS
K : X ×X → R, corresponding RKHSH, and associated feature map
φ : X → H, defined as φ(x) = (φi(x))i∈I .
The space of Sum of Squares (SoS) w.r.t. φ is defined as

S ,
{
x 7→ φ>(x)Qφ(x) : Q � 0

}
.

Any function f ∈ S is nonnegative.
S is not a subspace of H, but we can construct another RKHS in
which S is a subspace. Define a new feature map ψ : X → H′0 as

ψ(x) = (φi(x) · φj(x))i,j∈I .

which has the kernel K′

K′(x, y) , 〈ψ(x) , ψ(y) 〉H′
0

=
∑
i,j∈I

φi(x)φj(x) φi(y)φj(y) =

=
∑
i∈I

φi(x)φi(y)
∑
j∈I

φj(x)φj(y) = 〈φ(x) , φ(y) 〉2 = K2(x, y).

Observe that

S =
{
x 7→ φ>(x)Qφ(x) : Q � 0

}
=

{
x 7→

∑
i,j∈I

Qijφi(x)φj(x) : Q � 0

}

=

{
x 7→

∑
i,j∈I

QijψI(i,j)(x) : Q � 0

}
⊂ H′.

Representer Theorem
For a particular set {Xi}ni=1, we define Sn:

Sn =

{
x 7→

n∑
l=1

αlK
′(x,Xi) : α ∈ Rn

}
∩ S.

Theorem 1 (Representer Theorem). Let Ln be a convex empirical loss
function. Then for all λ > 0, there exists a unique solution f̂ ∈ S satisfying

Ln(f̂) + λ
∥∥∥f̂∥∥∥2

H′
= inf
f∈S

Ln(f) + λ ‖f‖2H′ .

Moreover, f̂ ∈ Sn.

Semidefinite Programming Formulation
By representer theorem: f(x) =

∑n
l=1 αlK

′(Xi, x) under the con-
dition that the function has an SoS representation, i.e., f(x) =
φ(x)>Qφ(x) for some Q � 0.
Define a d × n matrix Φ = [φ(X1) · · ·φ(Xn)] and an n × n diagonal
matrix A = diag(α) = diag(α1, . . . , αn). We have Q = ΦAΦ>.
Q is d × d, but has rank n, which can be much smaller than d. The
constraint on PSDness of Q can be written as

eig(Q) = eig(ΦAΦ>) = eig(Φ
√
A
√
AΦ>) = eig(

√
AΦ>Φ︸ ︷︷ ︸

,G

√
A) = eig(GA).

Here G = Φ>Φ is the n × n Grammian matrix. We have Φij =∑
k∈I φk(Xi)φk(Xj) = 〈φ(Xi) , φ(Xj) 〉H = K(Xi, Xj).

So we can write:

inf
f∈S

Ln(f) + λ ‖f‖2H′ = inf
α∈Rn

Ln

(
n∑
l=1

K′(Xl, ·)αl

)
+ λα>K ′α.

s.t. Gdiag(α) � 0

For squared loss, we get the following semidefinite program:

min
t,α∈Rn

t

s.t.

 In×n Lα 0n×n
α>L> t+ 2α>K′>Y 01×n
0n×n 0n×1 Gdiag(α) + diag(α)G


2n+1×2n+1

� 0.
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